Authors:
Penki Ramu GMRIT, Department of Civil Engineering, Rajam, Vizianagaram, AP, India

Search for other papers by Penki Ramu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7551-9630
,
B. Sai Santosh GMRIT, Department of Civil Engineering, Rajam, Vizianagaram, AP, India

Search for other papers by B. Sai Santosh in
Current site
Google Scholar
PubMed
Close
, and
K. Chalapathi GMRIT, Department of Civil Engineering, Rajam, Vizianagaram, AP, India

Search for other papers by K. Chalapathi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Food, water, and energy scarcity threaten India's future, and they must be addressed first. To meet the country's ever-increasing population needs, agricultural productivity must be expanded. For the crop-land suitability, we have studied an area of about 6,539 km2 in Vizianagaram district. The majority of the land is used for paddy agriculture (Kharif). The crop-land suitability has been evaluated based on the different parameters identified in that study area. “Remote sensing (RS)” and “geographic information system (GIS)” were combined for the crop-land suitability using nine parameters. The slope, elevation, rainfall, soil texture, lithology, groundwater, land use–land cover (LULC), TWI, and land surface temperature are the primary criteria used to determine the crop-land suitability in the Vizianagaram district (AP). Thematic maps were created using Landsat 8 images and SRTM DEM images from USGS Earth Explorer. Based on these maps and the influence of these parameters, we may assign weights to the parameters and then rank them, the Analytic Hierarchy Process (AHP) allowing us to identify which area is more suitable for good crop productivity and which is not. In this study, the soils are divided into four categories: low suitability, moderate suitability, high suitability, and extremely high suitability. The suitability index is found to be in the range of 0–55.2%, which indicates the lack of outstanding agricultural lands in the sudy region.

  • Aguilar-Rivera, N. , Serna-Lagunes, R. , Michel-Cuello, C. , and Trujillo-Mata, A. (2019). Chapter 20 - upgrading comparative and competitive advantages for ethanol fuel production from agroindustrial crops in developing countries: Mexico as a case study. In: Ray, R.C. and Ramachandran, S. (Eds.), Bioethanol production from food crops. Academic Press, pp. 401415. https://doi.org/10.1016/B978-0-12-813766-6.00020-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akıncı, H. , Özalp, A.Y. , and Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture, 97: 7182. https://doi.org/10.1016/j.compag.2013.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bera, S. , Ahmad, M. , and Suman, S. (2017). Land suitability analysis for agricultural crop using remote sensing and GIS-A case study of Purulia district. IJSRD - International Journal for Scientific Research and Development, 5(6): 9991004.

    • Search Google Scholar
    • Export Citation
  • Bozdağ, A. , Yavuz, F. , and Dönertaş, A. (2016). AHP and GIS based land suitability analysis for Cihanbeyli (Turkey) County. Environmental Earth Sciences, 75. https://doi.org/10.1007/s12665-016-5558-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Debesa, G. , Gebre, S. , Abraham, A. , Regassa, A. , and Teka, S. (2020). GIS and remote sensing-based physical land suitability analysis for major cereal crops in Dabo Hana district, South-West Ethiopia. Cogent Food & Agriculture, 6. https://doi.org/10.1080/23311932.2020.1780100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doula, M.K. , Moreno-Ortego, J.L. , Tinivella, F. , Inglezakis, V.J. , Sarris, A. , and Komnitsas, K. (2017). Chapter 2 - olive mill waste: recent advances for the sustainable development of olive oil industry. In: Galanakis, C.M. (Ed.), Olive Mill waste. Academic Press, pp. 2956. https://doi.org/10.1016/B978-0-12-805314-0.00002-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Everest, T. , Sungur, A. , and Özcan, H. (2020). Determination of agricultural land suitability with a multiple-criteria decision-making method in Northwestern Turkey. International Journal of Environmental Science and Technology, 18. https://doi.org/10.1007/s13762-020-02869-9.

    • Search Google Scholar
    • Export Citation
  • Girmay, G. , Sebnie, W. , and Reda, Y. (2018). Land capability classification and suitability assessment for selected crops in Gateno watershed, Ethiopia. Cogent Food & Agriculture, 4, 1532863. https://doi.org/10.1080/23311932.2018.1532863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassan, I. , Javed, M. , Asif, M. , Luqman, M. , Ahmad, S. , Ahmad, A. , Akhtar, S. , and Hussain, B. (2020). Weighted overlay based land suitability analysis of agriculture land in Azad Jammu and Kashmir using GIS and AHP. Pakistan Journal of Agricultural Sciences, 57: 15091519. https://doi.org/10.21162/PAKJAS/20.9507.

    • Search Google Scholar
    • Export Citation
  • Hossen, B. , Yabar, H. , and Mizunoya, T. (2021). Land suitability assessment for pulse (green gram) production through remote sensing, GIS and multicriteria analysis in the coastal region of Bangladesh. Sustainability, 13: 12360. https://doi.org/10.3390/su132212360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jamil, M. , Sahana, M. , and Sajjad, H. (2018). Crop suitability analysis in the Bijnor district, UP, using geospatial tools and fuzzy analytical hierarchy process. Agricultural Research, 7. https://doi.org/10.1007/s40003-018-0335-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, M.A. , Ahmad, R. , and Khan, H.H. (2022). Multi-criteria land suitability analysis for agriculture using AHP and remote sensing data of northern region India. IntechOpen. https://doi.org/10.5772/intechopen.102432.

    • Search Google Scholar
    • Export Citation
  • Kumar, A. , Pramanik, M. , Chaudhary, S. , and Negi, M.S. (2021). Land evaluation for sustainable development of Himalayan agriculture using RS-GIS in conjunction with analytic hierarchy process and frequency ratio. Journal of the Saudi Society of Agricultural Sciences, 20: 117. https://doi.org/10.1016/j.jssas.2020.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loc, N. , Chou, T.-Y. , Hoang, T.V. , and Tran, T. (2021). A GIS-based multicriteria analysis of land suitability for groundnut crop in Nghe an Province, Vietnam. International Journal of Geoinformatics, 7: 8595. https://doi.org/10.52939/ijg.v17i6.2071.

    • Search Google Scholar
    • Export Citation
  • Penki, R. , Basina, S.S. , and Tanniru, S.R. (2022a). Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna district in Andhra Pradesh. https://doi.org/10.21203/rs.3.rs-1399020/v1.

    • Search Google Scholar
    • Export Citation
  • Penki, R. , Srinivasa Rao, T. , Vinod Naik, G. , and Aparna, R. (2022b). Identification of parking sites in the Kukatpally region using GIS and AHP. In: Gupta, A.K. , Shukla, S.K. , and Azamathulla, H. (Eds.), Advances in construction materials and sustainable environment. Springer, Singapore, pp. 447456. https://doi.org/10.1007/978-981-16-6557-8_36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pramanik, M. (2016). Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Modeling Earth Systems and Environment, 2. https://doi.org/10.1007/s40808-016-0116-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramu, P. , Srinivasarao, T. , Lalith Nandan, K. , and Keshav, M. (2020). Fuzzy AHP, RS & GIS based hybrid approach for airport site selection-Kothagudem district. International Journal of Advanced Science and Technology, 29: 16451653.

    • Search Google Scholar
    • Export Citation
  • Rao, T.S. , Babu, I.N. , and Chandana, N. (2018). MSW landfill site selection for Hyderabad city using GIS and AHP. Journal of Remote Sensing GIS, 9: 1525. https://doi.org/10.37591/.v9i1.81.

    • Search Google Scholar
    • Export Citation
  • Ravinder, R. and Ramu, P. (2020). Flood risk assessment using remote sensing and GIS for Anigunta watershed, Telangana. International Journal of Scientific & Technology Research, 9: 10.

    • Search Google Scholar
    • Export Citation
  • Romeijn, H. , Faggian, R. , Diogo, V. , and Sposito, V. (2016). Evaluation of deterministic and complex analytical hierarchy process methods for agricultural land suitability analysis in a changing climate. ISPRS International Journal of Geo-Information, 5: 99. https://doi.org/10.3390/ijgi5060099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saaty, T.L. (1990). How to make a decision: the analytic hierarchy process. European Journal of Operational Research, Desicion making by the analytic hierarchy process: Theory and applications, 48: 926. https://doi.org/10.1016/0377-2217(90)90057-I.

    • Search Google Scholar
    • Export Citation
  • Saha, S. , Sarkar, D. , Mondal, P. , and Goswami, S. (2021). GIS and multi-criteria decision-making assessment of sites suitability for agriculture in an anabranching site of sooin river, India. Modeling Earth Systems and Environment, 7. https://doi.org/10.1007/s40808-020-00936-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, R. (2019). Where deep learning meets GIS. Esri. URL https://www.esri.com/about/newsroom/arcwatch/where-deep-learning-meets-gis/ (accessed 8 January 2022).

    • Search Google Scholar
    • Export Citation
  • Singh, P. , Upadhyay, R.K. , Bhatt, H.P. , Oza, M.P. , and Vyas, S.P. (2018). Crop suitability analysis for cereal crops of Uttar Pradesh, India. In: The International archives of the photogrammetry, remote sensing and spatial information sciences. Copernicus GmbH, pp. 353360. https://doi.org/10.5194/isprs-archives-XLII-5-353-2018.

    • Search Google Scholar
    • Export Citation
  • Taani, A. , Al-Husban, Y. , and Farhan, I. (2020). Land suitability evaluation for agricultural use using GIS and remote sensing techniques: the case study of Ma’an Governorate, Jordan. The Egyptian Journal of Remote Sensing and Space Science, 24(1): 109117. https://doi.org/10.1016/j.ejrs.2020.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taghizadeh-Mehrjardi, R. , Nabiollahi, K. , Rasoli, L. , Kerry, R. , and Scholten, T. (2020). Land suitability assessment and agricultural production sustainability using machine learning models. Agronomy, 10: 573. https://doi.org/10.3390/agronomy10040573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talaviya, T. , Shah, D. , Patel, N. , Yagnik, H. , and Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4: 5873. https://doi.org/10.1016/j.aiia.2020.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tashayo, B. , Honarbakhsh, A. , Akbari, M. , and Eftekhari, M. (2020). Land suitability assessment for maize farming using a GIS-AHP method for a semi- arid region, Iran. Journal of the Saudi Society of Agricultural Sciences, 19. https://doi.org/10.1016/j.jssas.2020.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yalew, S. , Griensven, A. , Mul, M.L. , and Zaag, P. (2016). Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Modeling Earth Systems and Environment, 101(2). https://doi.org/10.1007/s40808-016-0167-x.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
  • Top

 

 

The author instruction is available in PDF.
Please, download the file from HERE.

 

 

Senior editors

Editor(s)-in-Chief: Felföldi, József

Chair of the Editorial Board Szendrő, Péter

Editorial Board

  • Beke, János (Szent István University, Faculty of Mechanical Engineerin, Gödöllő – Hungary)
  • Fenyvesi, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Szendrő, Péter (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Felföldi, József (Szent István University, Faculty of Food Science, Budapest – Hungary)

 

Advisory Board

  • De Baerdemaeker, Josse (KU Leuven, Faculty of Bioscience Engineering, Leuven - Belgium)
  • Funk, David B. (United States Department of Agriculture | USDA • Grain Inspection, Packers and Stockyards Administration (GIPSA), Kansas City – USA
  • Geyer, Martin (Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department of Horticultural Engineering, Potsdam - Germany)
  • Janik, József (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)
  • Kutzbach, Heinz D. (Institut für Agrartechnik, Fg. Grundlagen der Agrartechnik, Universität Hohenheim – Germany)
  • Mizrach, Amos (Institute of Agricultural Engineering. ARO, the Volcani Center, Bet Dagan – Israel)
  • Neményi, Miklós (Széchenyi University, Department of Biosystems and Food Engineering, Győr – Hungary)
  • Schulze-Lammers, Peter (University of Bonn, Institute of Agricultural Engineering (ILT), Bonn – Germany)
  • Sitkei, György (University of Sopron, Institute of Wood Engineering, Sopron – Hungary)
  • Sun, Da-Wen (University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Dublin – Ireland)
  • Tóth, László (Szent István University, Faculty of Mechanical Engineering, Gödöllő – Hungary)

Prof. Felföldi, József
Institute: MATE - Hungarian University of Agriculture and Life Sciences, Institute of Food Science and Technology, Department of Measurements and Process Control
Address: 1118 Budapest Somlói út 14-16
E-mail: felfoldi.jozsef@uni-mate.hu

Indexing and Abstracting Services:

  • SCOPUS
  • CABI

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
8
Scimago
Journal Rank
0,141
Scimago Quartile Score Environmental Engineering (Q4)
Industrial and Manufacturing Engineering (Q4)
Mechanical Engineering (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Industrial and Manufacturing Engineering 261/338 (Q4)
Environmental Engineering 138/173 (Q4)
Mechanical Engineering 495/601 (Q4)
Scopus
SNIP
0,381

2020  
Scimago
H-index
8
Scimago
Journal Rank
0,197
Scimago
Quartile Score
Environmental Engineering Q4
Industrial and Manufacturing Engineering Q3
Mechanical Engineering Q4
Scopus
Cite Score
33/69=0,5
Scopus
Cite Score Rank
Environmental Engineering 126/146 (Q4)
Industrial and Manufacturing Engineering 269/336 (Q3)
Mechanical Engineering 512/596 (Q4)
Scopus
SNIP
0,211
Scopus
Cites
53
Scopus
Documents
41
Days from submission to acceptance 122
Days from acceptance to publication 40
Acceptance rate 86%

 

2019  
Scimago
H-index
6
Scimago
Journal Rank
0,123
Scimago
Quartile Score
Environmental Engineering Q4
Industrial and Manufacturing Engineering Q4
Mechanical Engineering Q4
Scopus
Cite Score
18/33=0,5
Scopus
Cite Score Rank
Environmental Engineering 108/132 (Q4)
Industrial and Manufacturing Engineering 242/340 (Q3)
Mechanical Engineering 481/585 (Q4)
Scopus
SNIP
0,211
Scopus
Cites
13
Scopus
Documents
5

 

Progress in Agricultural Engineering Sciences
Publication Model Hybrid
Submission Fee none
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Article Processing Charge 900 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription:  148 EUR / 185 USD
Print + online subscription: 172 EUR / 215 USD
Subscription fee 2023 Online subsscription: 152 EUR / 185 USD
Print + online subscription: 177 EUR / 215 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles can be purchased at the prices indicated.

Progress in Agricultural Engineering Sciences
Language English
Size B5
Year of
Foundation
2004
Volumes
per Year
1
Issues
per Year
1
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1786-335X (Print)
ISSN 1787-0321 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2022 0 0 0
May 2022 0 0 0
Jun 2022 0 0 0
Jul 2022 0 0 0
Aug 2022 0 0 0
Sep 2022 276 10 8
Oct 2022 0 0 0