View More View Less
  • 1 University of Pécs, Boszorkány u. 2, H-7624 Pécs, Hungary
Restricted access

Experience shows that the nuclear power plant can be safely designed for vibratory effects of earthquakes. Contrary to this, the plants can be heavily damaged by effects of earthquake-induced phenomena like tsunami, soil liquefaction after surviving the ground shaking effects. In the paper, the nuclear power plant’s safety analysis methodology is outlined for the case of soil liquefaction. In the paper the methodology for safety analysis of nuclear power plants for the case of liquefaction is outlined for both deterministic and probabilistic cases. It is shown, how the analysis of consequences of the liquefaction has to be embedded into the overall analysis of plant seismic safety. The selection of hazard and the fragility assessment methods is discussed from the point of view of needs of safety analysis.

  • [1]

    ASME/ANS RA-S-2008, Standard for level 1 Large early release frequency probabilistic risk assessment for nuclear power plant applications 2008 American Society of Mechanical Engineering (ASME)

    • Search Google Scholar
    • Export Citation
  • [2]

    Katona T. J. Ahmed Wael (ed)Seismic safety analysis and upgrading of operating nuclear power plants (Chapter 4) Nuclear Power, Practical Aspects 2012 New York InTech 77 124 http://dx.doi.org/10.5772/51368

    • Search Google Scholar
    • Export Citation
  • [3]

    Seismic hazards in site evaluation for nuclear installations, safety guide International Atomic Energy Agency 2010 Vienna

  • [4]

    McGuire R. K., Silva W. J. & Kenneally R. New seismic design spectra for nuclear power plants Nuclear Engineering and Design 2000 203 249 257

  • [5]

    Katona T. J. & Tóth L. Damages indicators for post-earthquake condition assessment Acta Geod Geophys 2013 48 333 345 DOI 10.1007/s40328-013-0021-9

  • [6]

    Dashti S., Bray J. D., Pestana J. M., Riemer M. & Wilson D. Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil J. Geotech. Geoenviron. Eng. ASCE 2010 136 1 151 164

    • Search Google Scholar
    • Export Citation
  • [7]

    Győri E., Tóth L., Gráczer Z. & Katona T. Liquefaction and post-liquefaction settlement assessment - a probabilistic approach Acta Geodaetica et Geophysica 2011 46 3 347 369

    • Search Google Scholar
    • Export Citation
  • [8]

    Tokimatsu K. & Seed H. B. Evaluation of settlements in sands due to earthquake shaking Journal of Geotechnical Engineering, ASCE 1987 113 8 861 879

  • [9]

    US NRC 2003 Procedures and criteria for assessing seismic soil liquefaction at nuclear power plant sites Regulatory Guide 1.198, November 2003

    • Search Google Scholar
    • Export Citation
  • [10]

    Seed R. B., Cetin K. O., Moss R. E. S., Kammerer A., Wu J., Pestana J., Riemer M., Sancio R. B., Bray J. D., Kayen R. E. & Faris A. Recent advances in soil liquefaction engineering, A unified and consistent framework Earthquake Engineering Research Center Report 2003 Berkeley University of California No. EERC 2003-06

    • Search Google Scholar
    • Export Citation
  • [11]

    Juang C., Jiang T. & Andrus R. Assessing probability-based methods for liquefaction potential evaluation J. Geotech Geoenviron. Eng. 2002 128 7 580 589

    • Search Google Scholar
    • Export Citation
  • [12]

    Katona T. J. Modeling of fatigue-type seismic damage for nuclear power plants Computational Materials Science 2012 64 22 24

  • [13]

    Kramer S. L. & Mayfield R. T. Return period of soil liquefaction J. Geotech. Geoenviron. Eng. 2007 133 7 802 813

  • [14]

    Cetin K. O., Seed R. B., Der Kiureghian A., Tokimatsu K., Harder L. F. Jr., Kayen R. E. & Moss R. E. S. SPT-based probabilistic and deterministic assessment of seismic soil liquefaction potential J. Geotech. Geoenviron. Eng. 2004 130 12 1314 1340

    • Search Google Scholar
    • Export Citation
  • [15]

    Idriss I. M. & Boulanger R. W. R. B Seed (ed)Soil liquefaction during earthquakes In Technical review and comments 2008 Berkeley, CA University of California 2008 EERI Monograph, Report No. UCB/GT - 2010/01

    • Search Google Scholar
    • Export Citation
  • [16]

    Holzer T. L., Noce T. E. & Bennett M. J. Liquefaction probability curves for surficial geologic deposits Environmental and Engineering Geoscience 2011 XVII 1 1 21

    • Search Google Scholar
    • Export Citation
  • [17]

    Goda K., Atkinson G. M., Hunter J. A., Crow H. & Motazedian D. Probabilistic liquefaction hazard analysis for four Canadian cities Bulletin of the Seismological Society of America 2011 101 190 201

    • Search Google Scholar
    • Export Citation
  • [18]

    Cornell C. A. & Krawinkler H. Progress and challenges in seismic performance assessment, University of California Berkeley, USA PEER Center News 2000 3 2 1 3 April

    • Search Google Scholar
    • Export Citation
  • [19]

    Zareian F. & Krawinkler F. Simplified performance based earthquake engineering The John A. Blume Earthquake Engineering Center, Report No. 169 2009 Stanford Uniersity

    • Search Google Scholar
    • Export Citation
  • [20]

    Katona T. J. Options for the treatment of uncertainty in seismic probabilistic safety assessment of nuclear power plants Pollack Periodica 2010 5 1 121 136

    • Search Google Scholar
    • Export Citation
  • [21]

    Baker J. W. & Cornell C. A. Vector-valued ground motion intensity measures for probabilistic seismic demand analysis PEER Report 2006/08 2006 Berkeley University of California October

    • Search Google Scholar
    • Export Citation
  • [22]

    Juang C. H., Li D. K., Fang S. Y., Liu Z. & Khor E. H. Simplified procedure for developing joint distribution of amax and Mw for probabilistic liquefaction hazard analysis J. Geotech. Geoenviron. Eng 2008 134 1050 1058

    • Search Google Scholar
    • Export Citation
  • [23]

    Baker J. W. & Faber M. H. Liquefaction risk assessment using geostatistics to account for soil spatial variability J. Geotech. Geoenviron, ASCE 2008 14 23 January

    • Search Google Scholar
    • Export Citation
  • [24]

    Kramer S. L. & Mitchell R. A. Ground motion intensity measures for liquefaction hazard evaluation Earthquake Spectra 2006 22 2 413 438 May

  • [25]

    Katona T. J. Interpretation of the physical meaning of the cumulative absolute velocity Pollack Periodica 2011 6 1 99 106

  • [26]

    Campbell K. W. & Bozorgnia Y. Analysis of Cumulative Absolute Velocity (CAV) and JMA Instrumental Seismic Intensity (IJMA) using the PEER-NGA strong motion database Pacific Earthquake Engineering Research Center, PEER Report 2010/102 2010 Berkeley University of California February

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 11 11 2
Full Text Views 14 11 0
PDF Downloads 5 2 0