Authors:
Eva Pongrácz University of Oulu, FI-90014 P.O.Box 7300, Oulu, Finland

Search for other papers by Eva Pongrácz in
Current site
Google Scholar
PubMed
Close
,
Johanna Niemistö University of Oulu, FI-90014 P.O.Box 7300, Oulu, Finland

Search for other papers by Johanna Niemistö in
Current site
Google Scholar
PubMed
Close
,
Verónica García University of Oulu, FI-90014 Oulu, Finland
University of Cantabria, Avda de los Castros s/n, 39005 Santander, Cantabria, Spain

Search for other papers by Verónica García in
Current site
Google Scholar
PubMed
Close
,
Niko Hänninen University of Oulu, FI-90014 P.O.Box 7300, Oulu, Finland

Search for other papers by Niko Hänninen in
Current site
Google Scholar
PubMed
Close
,
Paula Saavalainen University of Oulu, FI-90014 Oulu, Finland

Search for other papers by Paula Saavalainen in
Current site
Google Scholar
PubMed
Close
, and
Riitta Keiski University of Oulu, FI-90014 Oulu, Finland

Search for other papers by Riitta Keiski in
Current site
Google Scholar
PubMed
Close
Restricted access

Further to Directive 2009/28/EC on the promotion of the use of energy from renewable sources, the share of biofuels in transport should rise to a minimum of 10% in Member States by 2020. In Finland, the goal is set at 20%, and it is estimated that this can be produced entirely in domestic factories, as long as the projects already underway will be successful and additional industrial-scale biofuel plants would be built. The paper reviews the state of projects underway in Finland, and outlines current research activity in promoting waste and by-product — based biofuels.

  • [1]

    REN21, Renewables 2014 Global Status Report, Paris, REN21 Secretariat, 2014, http://www.ren21.net/ren21activities/globalstatusreport.aspx, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [2]

    Sorda G. , Banse M., Kemfert C. An overview of biofuel policies across the world, Energy Policy, Vol. 38, 2010, pp. 69776988.

  • [3]

    EU Directive 2009/28/EC of the European parliament and the council on the promotion of the use of energy from renewable sources and amending and subsequently repealing, Directives 2001/77/EC and 2003/30/EC, 23.4.2009.

    • Search Google Scholar
    • Export Citation
  • [4]

    Finlex, Law on promoting biofuels in transport, (in Finnish) 13.4.2007/446 http://www.finlex.fi/fi/laki/ajantasa/2007/20070446, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [5]

    Europa press release Commission sets up system for certifying sustainable biofuels, Memo IP/10/711, http://europa.eu/rapid/pressReleasesAction.do?reference=IP/10/711, 10.6.2010, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [6]

    CEN — European Committee for Standardization, Sustainably produced biomass for energy applications, CEN/TC 383, Published standards: EN 16214-1:2012, CEN/TS 16214-2:214, EN 16214-3:2012, EN 16214-4. 2013.

    • Search Google Scholar
    • Export Citation
  • [7]

    Searchinger T. , Heimlich R., Houghton R. A., Dong F., Elobeid A., Fabiosa J., Tokgoz S., Hayes D., Yu T. H. Land-use change greenhouse gases through emissions from use of U.S. croplands for biofuels increases, Science, Vol. 319, 2008, pp. 12381240.

    • Search Google Scholar
    • Export Citation
  • [8]

    Kendall A. , Chang B. Estimating life cycle greenhouse gas emissions from corn-ethanol: a critical review of current U.S. practices, Journal of Cleaner Production, Vol. 17, 2009, pp. 11751182.

    • Search Google Scholar
    • Export Citation
  • [9]

    Börjesson P. , Tufvesson L. M. Agricultural crop-based biofuels — resource efficiency and environmental performance including direct land use changes, Journal of CleanerProduction, Vol. 17, 2011, pp. 11751182.

    • Search Google Scholar
    • Export Citation
  • [10]

    Soimakallio S. , Koponen K. How to ensure greenhouse gas emission reductions by increasing the use of biofuels? — Suitability of the European Union sustainability criteria, Biomass and Bioenergy, Vol. 35, 2011, pp. 35043513.

    • Search Google Scholar
    • Export Citation
  • [11]

    Palo M. Coevolution of forestry and society in Finland: From preindustrial to industrial forestry, Vuosilusto 2004–2005, Essays on the history of Finnish forestry 1949–1999, HouseLuston tuki, CityPunkaharju, 2006.

    • Search Google Scholar
    • Export Citation
  • [12]

    Kunnas H. Forestry production in Finland 1860–1965, (in Finnish), Studies of Finland economic growth 4, The Bank of Finland, Helsinki, 1973.

    • Search Google Scholar
    • Export Citation
  • [13]

    METLA 2000, Finnish Statistical Yearbook of Forestry 2000, (in Finnish) http://www.metla.fi/metinfo/tilasto/julkaisut/vsk/2000/index.html, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [14]

    METLA 2013, Finnish Statistical Yearbook of Forestry 2011, http://www.metla.fi/metinfo/tilasto/julkaisut/vsk/2013/index.html, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [15]

    Gustavsson, L. , Eriksson, L., Sathre, R. Costs and CO2 benefits of recovering, refining and transporting logging residues for fossil fuel replacement, Applied Energy, Vol. 88, 2011, pp. 192197.

    • Search Google Scholar
    • Export Citation
  • [16]

    European Commission, Science and Environmental Policy, DG Environmental news alert service, Benefits of logging residues as bioenergy depend on the fuel they replace, 25 November 2010, http://ec.europa.eu/environment/integration/research/ewsalert/pdf/219na5_en.pdf, (last visited 2 February 2014).

    • Search Google Scholar
    • Export Citation
  • [17]

    Finnish Oil and Gas Federation, Sales of oil products in Finland in 2013, (in Finnish), 2014, http://www.oil.fi/sites/default/files/sivut/sisaltosivu/liitetiedostot/3.4_myynti.pdf (last visited 9 February 2014).

    • Search Google Scholar
    • Export Citation
  • [18]

    Kallio H. Finland to become a biofuel superpower, (in Finnish) Lapin Kansa, 2012.

  • [19]

    ST1, Ethanol from bio-waste (in Finnish), 2015, http://www.st1.fi/puhtaampaa-siksihalvempaa#biojatteesta-etanolia , (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [20]

    ST1, RE85 — More efficient bioethanol from Finnish waste, (in Finnish) 2015, http://www.st1.fi/tuotteet/re85 , (last visited 9 February 2014).

    • Search Google Scholar
    • Export Citation
  • [21]

    ST1, Cellunolix® ethanol plant to be built in Finland, Press Bulletin 2014, http://www.st1.eu/news/cellunolix-ethanol-plant-to-be-built-in-finland, (last visited 9 August 2014).

    • Search Google Scholar
    • Export Citation
  • [22]

    Neste Oil, NEXBTL Renewable Diesel, 2014, http://www.nesteoil.com/default.asp?path=1,41,11991,22708,22709,22710, (last visited 9 February 2014).

    • Search Google Scholar
    • Export Citation
  • [23]

    Institut für Energie und Umwelt, An Assessment of Energy and Greenhouse Gases of NExBTL, Final Report, June 2006, on behalf of Neste Oil Corporation, http://www.nesteoil.com/binary.asp?GUID=52C6D33B-F406-4681-BFC2-37C70914 E9DD, (last visited 3 February 2014.

    • Search Google Scholar
    • Export Citation
  • [24]

    Neste Oil, Excellent results from biofuel trial involving Neste Oil, Helsinki Region transport, and proventia: significantly reduced local emissions, Neste Oil Corporation, 10.2.2011, http://nesteoil.com/default.asp?path=1;41;540;1259;1260;16746;16899, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [25]

    DieselNet, News, Lufthansa successfully concludes NexBTL aviation biofuel tests, 13.1.2012, http://www.dieselnet.com/news/2012/01lufthansa.php, (last visited 3 February 2014.

    • Search Google Scholar
    • Export Citation
  • [26]

    Neste Oil, Neste Oil to invest EUR 65 million in enhancing gasoline production at Porvoo, Neste Oil Corporation, 29 August 2012, http://www.nesteoil.com/default.asp?path=1;41;540;1259;1260;20492;20676, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [27]

    Neste Oil, Neste Oil inaugurates Europe's first pilot plant for producing microbial oil from waste and residues, Neste Oil Corporation, 29.8.2012, http://www.nesteoil.com/default.asp?path=1;41;540;1259;1260;18523;20202, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [28]

    UPM, UPM to build the world first biorefinery producing wood-based biodiesel, UPM Corporate Communication, 1.2.2012, http://www.upm.com/EN/MEDIA/All-news/Pages/UPM-to-build-the-world%E2%80%99s-first-biorefinery-producing-wood-basedbiodiesel-001-Wed-01-Feb-2012-10-05.aspx, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [29]

    UPM, UPM BiofuelsEU awards NER300 technology grant for UPMs biorefinery project in France, 18 December 2012, http://www.upm.com/EN/INVESTORS/Investor-News/Pages/EU-awards-NER300-technology-grant-for-UPM%E2%80%99s-biorefinery-project-in-France-001-Tue-18-Dec-2012-16-05.aspx (last visited 9 February 2014).

    • Search Google Scholar
    • Export Citation
  • [30]

    Laine M. A unique biorefinery, Biohybrid powerplant, Presented at ‘Sensibly green energy day’, Forssa, Finland, 24.4.2013. http://portal.hamk.fi/portal/page/portal/HAMKJulkisetDokumentit/Tutkimus_ja_kehitys/HAMKin%20hankkeet/vihi/Envor%20biorefinery%20JV%20energiap%C3%A4iv%C3%A4%20240413%20ver2.pdf, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [31]

    Laine M. Unique biorefinery concept planned in Forssa, (in Finnish) Presented at the Responsible business through sustainable recycling seminar, Forssa, Finland, 30.9.2010 Seminar proceedings, 2010, pp. 1213, http://www.fskk.fi/index.php?action=download_resource&id=1003&module=resourcesmodule&src=%40random49b8edd0df0f6, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [32]

    Khanna M. , Scheffran J., Zilberman D. Handbook of bioenergy economics and policy, Springer, New York, 2010.

  • [33]

    Lee S. Y. , Park J. H., Jang S. H., Nielsen L. K., Kim J., Jung K. S. Fermentative butanol production by Clostridia, Biotechnol and Bioeng, Vol. 101, 2008, pp. 209228.

    • Search Google Scholar
    • Export Citation
  • [34]

    Niemistö J. , Saavalainen P., Isomäki R., Kolli T., Huuhtanen M., Keiski R.L. Biobutanol production from biomass, In: Gupta V. K., Tuohy M. (Eds), Biofuels and Biorefineries, Recent developments, Berlin-Heidelberg, Springer-Verlag, 2008, pp. 443470.

    • Search Google Scholar
    • Export Citation
  • [35]

    García V. , Päkkilä J., Ojamo H., Muurinen E., Keiski R. L. Challenges in biobutanol production, How to improve the efficiency? Renew Sust Energy Rev. Vol. 15, 2011, pp. 964980.

    • Search Google Scholar
    • Export Citation
  • [36]

    Nimcevic D. , Gapes J. R. The acetone-butanol fermentation in pilot plant and pre-industrial scale, J Mol Microbiol Biotechnol, Vol. 2, 2000, pp. 2126.

    • Search Google Scholar
    • Export Citation
  • [37]

    Ni Y. , Sun Z. Recent progress on industrial fermentative production of acetone-butanolethanol by Clostridium acetobutylicum in China, Appl Microbiol Biotechnol, Vol. 83, 2009, pp. 415423.

    • Search Google Scholar
    • Export Citation
  • [38]

    European Biofuels Technology Platform, Biobutanol, 2012. http://www.biofuelstp.eu/butanol.html (May 30, 2012), (last visited 3 February 2014).

  • [39]

    Al-Shorgani N. K. N. , Kalil M. S., Yusoff W. M. W. Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4, BioprocessBiosyst Eng, Vol. 35, 2012, pp. 817826.

    • Search Google Scholar
    • Export Citation
  • [40]

    Sun Z. , Liu S. Production of n-butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia acetobutylicum ATCC 824, Biomass Bioenerg, Vol. 39, 2012, pp. 3947.

    • Search Google Scholar
    • Export Citation
  • [41]

    Qureshi N. , Saha B. C., Dien B., Hector R. E., Cotta M. A. Production of butanol (a biofuel) from agricultural residues, Part I, Use of barley straw hydrolysate, BiomassBioenerg, Vol. 34, 2010, pp. 559565.

    • Search Google Scholar
    • Export Citation
  • [42]

    Alinia R. , Zabihi S., Esmaeilzadeh F., Kalajahi J. F. Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production, Biosyst Eng, Vol. 107, 2010, pp. 6166.

    • Search Google Scholar
    • Export Citation
  • [43]

    Gao M. , Xu F., Li S., Ji X., Chen S., Zhang D. Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion, Biosystems Eng, Vol. 106, 2010, pp.470475.

    • Search Google Scholar
    • Export Citation
  • [44]

    Nguyena T. A. D. , Kim K. R., Han S. J., Cho H. Y., Kim J. W., Park S. M., Park C. P., Sim S. J. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars, Bioresour Technol, Vol. 101, 2010, pp. 74327438.

    • Search Google Scholar
    • Export Citation
  • [45]

    Li Q. , Jiang X., He Y., Li L., Xian M., Yang J. Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification, Appl Microbiol Biotechnol, Vol. 87, 2010, pp. 117126.

    • Search Google Scholar
    • Export Citation
  • [46]

    Liu Z. L. , Blaschek H. P. Biomass conversion inhibitors and in situ detoxification, In: Vertès A. A., Qureshi N., Blaschek H. P., Yukawa H. (Eds.) Biomass to biofuels, Strategies for global industries, Wiley, Great Britain, 2010, pp. 233259.

    • Search Google Scholar
    • Export Citation
  • [47]

    Palmqvist E. , Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates, I, Inhibition and detoxification, Biores Technol, Vol. 74, 2000, pp. 1724.

    • Search Google Scholar
    • Export Citation
  • [48]

    Tripathi A. , Sami H., Jain S. R., Viloria-Cols M., Zhuravleva N., Nilsson G., Jungvid H., Kumar A. Improved bio-catalytic conversion by novel immobilization process using cryogel beads to increase solvent production, Enzyme Microb Tech, Vol. 47, 2010, pp. 4.

    • Search Google Scholar
    • Export Citation
  • [49]

    Lee S. M. , Cho M. O., Park C. H., Chung Y. C., Kim J. H., Sang B. I., Um Y. Continuousm butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate, Energy & Fuel, Vol. 22, 2008, pp. 34593464.

    • Search Google Scholar
    • Export Citation
  • [50]

    Borden J. R. , Papoutsakis E. T. Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum, Appl Environ Microbiol, Vol. 73, 2007, pp. 30613068.

    • Search Google Scholar
    • Export Citation
  • [51]

    Lan E. I. , Liao J. C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide, Metab Eng, Vol. 13 2011, pp. 353363.

    • Search Google Scholar
    • Export Citation
  • [52]

    Inui M. , Suda M., Kimura S., Suda M., Yasuda K., Suzuki H., Toda H., Yamamoto S., Ukino S., Suzuki N., Yakawa H. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli, Appl Microbiol Biotechnol, Vol. 77, 2008, pp. 13051316.

    • Search Google Scholar
    • Export Citation
  • [53]

    Steen E. J. , Chan R., Prasad N., Myers S., Petzold C. J., Redding A., Ouellet M., Keasling J. D. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol, Microbial Cell factories, Vol. 7, No. 3, 2008, Article No. 36, 8 p.

    • Search Google Scholar
    • Export Citation
  • [54]

    Jones D. T. , Woods D. R. Acetone-butanol fermentation revisited, Microbiol Rev, Vol. 50, 1986, pp. 484524.

  • [55]

    García V. , Pongrácz E., Muurinen E., Keiski R. L. Pervaporation of dichloromethane from multicomponent aqueous systems containing n-butanol and sodium chloride, J. Membr. Sci. Vol. 326, 2009, pp. 92102.

    • Search Google Scholar
    • Export Citation
  • [56]

    García V. , Pongrácz E., Muurinen E., Keiski R.L. Recovery of n-butanol from salt containing solutions by pervaporation, Desalination, Vol. 241, 2009, pp. 201211.

    • Search Google Scholar
    • Export Citation
  • [57]

    Niemistö J. , Kujawski W., Keiski R. L. Pervaporation performance of composite poly(dimethyl siloxane) membrane for butanol recovery from model solutions, J. Membr.Sci, Vol. 434, 2013, pp. 5564.

    • Search Google Scholar
    • Export Citation
  • [58]

    Niemistö J. , Saavalainen P., Pongrácz E., Keiski R. L. Biobutanol as a potential sustainable biofuel — Assessment of lignocellulosic and waste-based feedstock, J Sustain Dev EnergyWater Environ Syst, Vol. 1(2), 2013, pp. 5877.

    • Search Google Scholar
    • Export Citation
  • [59]

    Rozicka A. , Niemistö J., Keiski R. L., Kujawski W. Apparent and intrinsic properties of commercial PDMS based membranes in pervaporative removal of acetone, butanol and ethanol from binary aqueous mixtures, J Membr Sci, Vol. 453, 2014, pp. 108118.

    • Search Google Scholar
    • Export Citation
  • [60]

    Niemistö J. Towards sustainable and efficient biofuels production, Use of pervaporation in product recovery and purification. PhD Thesis, University of Oulu, Acta Univ, Oul, 2014, C 485.

    • Search Google Scholar
    • Export Citation
  • [61]

    Yen H. W. , Lin S. F., Yan I. K. Use of poly(ether-block-amide) in pervaporation coupling with a fermentor to enhance butanol production in the cultivation of Clostridium acetobutylicum, J BioSci BioEng, Vol. 113, 2012, pp. 372377.

    • Search Google Scholar
    • Export Citation
  • [62]

    Yen H. W. , Chen Z. H., Yang I. K. Use of the composite membrane of poly(ether-blockamide) and carbon nanotubes (CNTs) in a pervaporation systems incorporated with fermentation for butanol production by Clostridium acetobutylicum, Bioresour Techno, Vol. 109, 2012, pp. 105109.

    • Search Google Scholar
    • Export Citation
  • [63]

    Van Hecke W. , Vandezande P., Claes S., Vangeel S., Beckers H., Diels L., De Weber H. Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes, Bioresource Technology, Vol. 111, 2012, pp. 368377.

    • Search Google Scholar
    • Export Citation
  • [64]

    Liu G. , Wei W., Wu H., Dong X., Jiang M., Jin W. Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation-PV coupled process, J Membr Sc, Vol. 373, 2011, pp. 121129.

    • Search Google Scholar
    • Export Citation
  • [65]

    Li S. Y. , Srivastava R., Parnas R. S. Study of in situ 1-butanol pervaporation from A-B-E fermentation using a PDMS composite membrane: validity of solution-diffusion model for pervaporative A-B-E fermentation, Biotechnol Prog, Vol. 27, 2011, pp. 111120.

    • Search Google Scholar
    • Export Citation
  • [66]

    Academy of Finland, Sustainable Energy Research Programme, 2008–2011. http://www.aka.fi/Tiedostot/Tutkimusohjelmaesitteet/energy%20engesite.pdf, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [67]

    Eurostat, Share of renewable energy in gross final energy consumption, 2011, http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&language=en&pcode=tsdcc340&plugin=1, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • [68]

    CLEEN Cluster for Energy and Environment, 2013, Sustainable Bioenergy Solutions for Tomorrow (BEST) Programme, http://www.cleen.fi/en/best, (last visited 3 February 2014).

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions template is available in MS Word.
Please, download the file from HERE.

 

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

 

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • Bálint Bachmann (Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Jeno Balogh (Department of Civil Engineering Technology, Metropolitan State University of Denver, Denver, Colorado, USA)
  • Radu Bancila (Department of Geotechnical Engineering and Terrestrial Communications Ways, Faculty of Civil Engineering and Architecture, “Politehnica” University Timisoara, Romania)
  • Charalambos C. Baniotopolous (Department of Civil Engineering, Chair of Sustainable Energy Systems, Director of Resilience Centre, School of Engineering, University of Birmingham, U.K.)
  • Oszkar Biro (Graz University of Technology, Institute of Fundamentals and Theory in Electrical Engineering, Austria)
  • Ágnes Borsos (Institute of Architecture, Department of Interior, Applied and Creative Design, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Matteo Bruggi (Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Italy)
  • Petra Bujňáková (Department of Structures and Bridges, Faculty of Civil Engineering, University of Žilina, Slovakia)
  • Anikó Borbála Csébfalvi (Department of Civil Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Mirjana S. Devetaković (Faculty of Architecture, University of Belgrade, Serbia)
  • Szabolcs Fischer (Department of Transport Infrastructure and Water Resources Engineering, Faculty of Architerture, Civil Engineering and Transport Sciences Széchenyi István University, Győr, Hungary)
  • Radomir Folic (Department of Civil Engineering, Faculty of Technical Sciences, University of Novi Sad Serbia)
  • Jana Frankovská (Department of Geotechnics, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia)
  • János Gyergyák (Department of Architecture and Urban Planning, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Kay Hameyer (Chair in Electromagnetic Energy Conversion, Institute of Electrical Machines, Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Germany)
  • Elena Helerea (Dept. of Electrical Engineering and Applied Physics, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Romania)
  • Ákos Hutter (Department of Architecture and Urban Planning, Institute of Architecture, Faculty of Engineering and Information Technolgy, University of Pécs, Hungary)
  • Károly Jármai (Institute of Energy and Chemical Machinery, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary)
  • Teuta Jashari-Kajtazi (Department of Architecture, Faculty of Civil Engineering and Architecture, University of Prishtina, Kosovo)
  • Róbert Kersner (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Rita Kiss  (Biomechanical Cooperation Center, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary)
  • István Kistelegdi  (Department of Building Structures and Energy Design, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Stanislav Kmeť (President of University Science Park TECHNICOM, Technical University of Kosice, Slovakia)
  • Imre Kocsis  (Department of Basic Engineering Research, Faculty of Engineering, University of Debrecen, Hungary)
  • László T. Kóczy (Department of Information Sciences, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, University of Győr, Hungary)
  • Dražan Kozak (Faculty of Mechanical Engineering, Josip Juraj Strossmayer University of Osijek, Croatia)
  • György L. Kovács (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Balázs Géza Kövesdi (Department of Structural Engineering, Faculty of Civil Engineering, Budapest University of Engineering and Economics, Budapest, Hungary)
  • Tomáš Krejčí (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
  • Jaroslav Kruis (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
  • Miklós Kuczmann (Department of Automations, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, Széchenyi István University, Győr, Hungary)
  • Tibor Kukai (Department of Engineering Studies, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Maria Jesus Lamela-Rey (Departamento de Construcción e Ingeniería de Fabricación, University of Oviedo, Spain)
  • János Lógó  (Department of Structural Mechanics, Faculty of Civil Engineering, Budapest University of Technology and Economics, Hungary)
  • Carmen Mihaela Lungoci (Faculty of Electrical Engineering and Computer Science, Universitatea Transilvania Brasov, Romania)
  • Frédéric Magoulés (Department of Mathematics and Informatics for Complex Systems, Centrale Supélec, Université Paris Saclay, France)
  • Gabriella Medvegy (Department of Interior, Applied and Creative Design, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Tamás Molnár (Department of Visual Studies, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Ferenc Orbán (Department of Mechanical Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Zoltán Orbán (Department of Civil Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Dmitrii Rachinskii (Department of Mathematical Sciences, The University of Texas at Dallas, Texas, USA)
  • Chro Radha (Chro Ali Hamaradha) (Sulaimani Polytechnic University, Technical College of Engineering, Department of City Planning, Kurdistan Region, Iraq)
  • Maurizio Repetto (Department of Energy “Galileo Ferraris”, Politecnico di Torino, Italy)
  • Zoltán Sári (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Grzegorz Sierpiński (Department of Transport Systems and Traffic Engineering, Faculty of Transport, Silesian University of Technology, Katowice, Poland)
  • Zoltán Siménfalvi (Institute of Energy and Chemical Machinery, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary)
  • Andrej Šoltész (Department of Hydrology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia)
  • Zsolt Szabó (Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Hungary)
  • Mykola Sysyn (Chair of Planning and Design of Railway Infrastructure, Institute of Railway Systems and Public Transport, Technical University of Dresden, Germany)
  • András Timár (Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Barry H. V. Topping (Heriot-Watt University, UK, Faculty of Engineering and Information Technology, University of Pécs, Hungary)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: peter.ivanyi@mik.pte.hu 

or amalia.ivanyi@mik.pte.hu

Indexing and Abstracting Services:

  • SCOPUS
  • CABELLS Journalytics

 

2023  
Scopus  
CiteScore 1.5
CiteScore rank Q3 (Civil and Structural Engineering)
SNIP 0.849
Scimago  
SJR index 0.288
SJR Q rank Q3

Pollack Periodica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 381 EUR / 420 USD
Print + online subscription: 456 EUR / 520 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

 

2023  
Scopus  
CiteScore 1.5
CiteScore rank Q3 (Civil and Structural Engineering)
SNIP 0.849
Scimago  
SJR index 0.288
SJR Q rank Q3

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 15 14 2
Feb 2024 4 1 1
Mar 2024 7 0 0
Apr 2024 8 0 0
May 2024 5 0 0
Jun 2024 14 0 0
Jul 2024 3 0 0