This research presents a field-circuit coupled parallel finite element model of a switched reluctance motor embedded in a simple closed loop control system. The parallel numerical model is based on the Schur-complement method coupled with an iterative solver. The used control system is the rotor position based control, which is applied to the FEM model. The results and parallel performance of the voltage driven finite element model are compared with the results from the current driven model. Moreover, the results of the start-up of the loaded motor show why the model accuracy is important in the control loop.
Hilairet M. , Lubin T., Tounzi A. Variable reluctance machines, Modeling and control, In Control of Non-conventional Synchronous Motors, Louis J. P. (Ed.) London, Wiley, 2011.
Miller T. J. E. Switched reluctace machines, In Handbook of Electric Motors, Toliyat, H. A., Kliman, G. B. (Eds.) Boca Raton, FL, CRC Press, 2004.
Bernat J. , Stepien S., Stranz A., Szymanski G., Sykulski J. K. Infinte time horizon optimal control of a stepper motor exploiting a finite element model, Bulletin of the Polish Academy of Science, Technical Science, Vol. 62, No. 4, 2014, pp. 835–841.
Kuczmann M. , Iványi A. The finite element method in magnetics, Budapest, Akadémiai Kiadó, 2008.
Bastos J. P. A. Sadowski, N. Electromagnetic modeling by finite element methods, New York, Marcel Dekker, Inc, 2003.
Yao W. , Jin J. M., Krein P. T. A highly efficient domain decomposition method applied to 3-D finite-element analysis of electromechanical and electric machine problems, IEEE Transactions on Energy Conversion, Vol. 27, No. 4, 2012, pp. 1078–1086.
Yao W. , Jin J. M., Krein P. T., Magill M. P. A finite-element-based domain decomposition method for efficient simulation of nonlinear electromechanical problems, IEEE Transactions on Energy Conversion, Vol. 29, No. 2, 2014, pp. 309–319.
Matlab/Simulink, http://www.mathworks.com (Last visited 6 February 2016).
Kanerva S. Simulation of electrical machines, circuits and control systems using finite element method and system simulator, Espoo, Doctoral Thesis, 2005.
Marcsa D. , Kuczmann M. Closed loop control of finite element model in magnetic system, Pollack Periodica, Vol. 10, No. 3, 2015, pp. 19–30.
Takahashi Y. , Iwashita T., Nakashima H., Tokumasu T., Fujita M., Wakao S., Fujiwara K., Ishihara Y. Parallel time-periodic finite-element method for steady-state analysis for rotating machines, IEEE Transactions on Magnetics, Vol. 48, No. 2, 2012, pp. 1019–1022.
Keränen J. , Pippuri J., Malinen M., Ruokolainen J., Råback P., Lyly M., Tammi K. Efficient parallel 3-D computation of electrical machines with elmer, IEEE Transactions on Magnetics, Vol. 51, No. 3, 2015, Article#: 7203704.
Magoulés F. , Roux F. X. Algorithms and theory for sub-structuring and domain decomposition methods, In Mesh Partitioning Techniques and Domain Decomposition Methods, Magoulés F. (Ed.) Kippen, Stirling, Saxe-Coburg Publications, 2007.
Nikishkov G. P. Basics of the domain decomposition method for finite element analysis, In Mesh Partitioning Techniques and Domain Decomposition Methods, Magoulés F. (Ed.) Kippen, Stirling, Saxe-Coburg Publications, 2007.
Marcsa D. , Kuczmann M. Performance study of domain decomposition methods for 2D parallel finite element analysis, Pollack Periodica, Vol. 8, No. 3, 2013, pp. 47–58.
Takahashi Y. , Fujiwara K., Iwashita T., Nakashima H. Parallel finite-element analysis of rotating machines based on domain decomposition considering nonconforming mesh connection, IEEE Transactions on Magnetics, Vol. 52, No. 3, 2016, Article#: 7401604.
Böhmer S. , Lange E., Hafner M., Cramer T., Bischof C., Hameyer K. Mesh decomposition for efficient parallel computing of electrical machines by mof FEM accounting for motion, IEEE Transactions on Magnetics, Vol. 48, No. 2, 2012, pp. 891–894.
Li H. L. , Ho S. L., Fu N. W. Precise magnetic field modeling techniques of rotary machines using transient finite-element method, IEEE Transactions on Magnetics, Vol. 48, No. 11, 2012, pp. 4192–4195.
Perrin-Bir R. , Coulomb J. L. A three dimensional finite element mesh connection for problems involving movement, IEEE Transactions on Magnetics, Vol. 31, No. 3, 1995, pp. 1920–1923.
Kuczmann M. , Budai T., Kovács G., Marcsa D., Friedl G., Prukner P., Unger T., Tomozi Gy. Application of PETSC and other useful packages in finite element simulation, Pollack Periodica, Vol. 8, No. 2, 2013, pp. 141–148.
Castro J. , Andrada O., Blanque B. Minimization of torque ripple in switched reluctance motor drives using direct instantaneous torque control, Proceedings of International Conference in Renewable Energies and Power Quality (ICREPQ’12), Santiago de Compostela, Spain, 28-30 March, 2012, pp. 1–5.
Agros2D, http://www.agros2d.org/ (Last visited 6 February 2016).