View More View Less
  • 1 Széchenyi István University, Egyetem tér 1, H-9026 Győr, Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

This research presents a field-circuit coupled parallel finite element model of a switched reluctance motor embedded in a simple closed loop control system. The parallel numerical model is based on the Schur-complement method coupled with an iterative solver. The used control system is the rotor position based control, which is applied to the FEM model. The results and parallel performance of the voltage driven finite element model are compared with the results from the current driven model. Moreover, the results of the start-up of the loaded motor show why the model accuracy is important in the control loop.

  • [1]

    Hilairet M. , Lubin T., Tounzi A. Variable reluctance machines, Modeling and control, In Control of Non-conventional Synchronous Motors, Louis J. P. (Ed.) London, Wiley, 2011.

    • Search Google Scholar
    • Export Citation
  • [2]

    Miller T. J. E. Switched reluctace machines, In Handbook of Electric Motors, Toliyat, H. A., Kliman, G. B. (Eds.) Boca Raton, FL, CRC Press, 2004.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bernat J. , Stepien S., Stranz A., Szymanski G., Sykulski J. K. Infinte time horizon optimal control of a stepper motor exploiting a finite element model, Bulletin of the Polish Academy of Science, Technical Science, Vol. 62, No. 4, 2014, pp. 835841.

    • Search Google Scholar
    • Export Citation
  • [4]

    Kuczmann M. , Iványi A. The finite element method in magnetics, Budapest, Akadémiai Kiadó, 2008.

  • [5]

    Bastos J. P. A. Sadowski, N. Electromagnetic modeling by finite element methods, New York, Marcel Dekker, Inc, 2003.

  • [6]

    Yao W. , Jin J. M., Krein P. T. A highly efficient domain decomposition method applied to 3-D finite-element analysis of electromechanical and electric machine problems, IEEE Transactions on Energy Conversion, Vol. 27, No. 4, 2012, pp. 10781086.

    • Search Google Scholar
    • Export Citation
  • [7]

    Yao W. , Jin J. M., Krein P. T., Magill M. P. A finite-element-based domain decomposition method for efficient simulation of nonlinear electromechanical problems, IEEE Transactions on Energy Conversion, Vol. 29, No. 2, 2014, pp. 309319.

    • Search Google Scholar
    • Export Citation
  • [8]

    Matlab/Simulink, http://www.mathworks.com (Last visited 6 February 2016).

  • [9]

    Kanerva S. Simulation of electrical machines, circuits and control systems using finite element method and system simulator, Espoo, Doctoral Thesis, 2005.

    • Search Google Scholar
    • Export Citation
  • [10]

    Marcsa D. , Kuczmann M. Closed loop control of finite element model in magnetic system, Pollack Periodica, Vol. 10, No. 3, 2015, pp. 1930.

    • Search Google Scholar
    • Export Citation
  • [11]

    Takahashi Y. , Iwashita T., Nakashima H., Tokumasu T., Fujita M., Wakao S., Fujiwara K., Ishihara Y. Parallel time-periodic finite-element method for steady-state analysis for rotating machines, IEEE Transactions on Magnetics, Vol. 48, No. 2, 2012, pp. 10191022.

    • Search Google Scholar
    • Export Citation
  • [12]

    Keränen J. , Pippuri J., Malinen M., Ruokolainen J., Råback P., Lyly M., Tammi K. Efficient parallel 3-D computation of electrical machines with elmer, IEEE Transactions on Magnetics, Vol. 51, No. 3, 2015, Article#: 7203704.

    • Search Google Scholar
    • Export Citation
  • [13]

    Magoulés F. , Roux F. X. Algorithms and theory for sub-structuring and domain decomposition methods, In Mesh Partitioning Techniques and Domain Decomposition Methods, Magoulés F. (Ed.) Kippen, Stirling, Saxe-Coburg Publications, 2007.

    • Search Google Scholar
    • Export Citation
  • [14]

    Nikishkov G. P. Basics of the domain decomposition method for finite element analysis, In Mesh Partitioning Techniques and Domain Decomposition Methods, Magoulés F. (Ed.) Kippen, Stirling, Saxe-Coburg Publications, 2007.

    • Search Google Scholar
    • Export Citation
  • [15]

    Marcsa D. , Kuczmann M. Performance study of domain decomposition methods for 2D parallel finite element analysis, Pollack Periodica, Vol. 8, No. 3, 2013, pp. 4758.

    • Search Google Scholar
    • Export Citation
  • [16]

    Takahashi Y. , Fujiwara K., Iwashita T., Nakashima H. Parallel finite-element analysis of rotating machines based on domain decomposition considering nonconforming mesh connection, IEEE Transactions on Magnetics, Vol. 52, No. 3, 2016, Article#: 7401604.

    • Search Google Scholar
    • Export Citation
  • [17]

    Böhmer S. , Lange E., Hafner M., Cramer T., Bischof C., Hameyer K. Mesh decomposition for efficient parallel computing of electrical machines by mof FEM accounting for motion, IEEE Transactions on Magnetics, Vol. 48, No. 2, 2012, pp. 891894.

    • Search Google Scholar
    • Export Citation
  • [18]

    Li H. L. , Ho S. L., Fu N. W. Precise magnetic field modeling techniques of rotary machines using transient finite-element method, IEEE Transactions on Magnetics, Vol. 48, No. 11, 2012, pp. 41924195.

    • Search Google Scholar
    • Export Citation
  • [19]

    Perrin-Bir R. , Coulomb J. L. A three dimensional finite element mesh connection for problems involving movement, IEEE Transactions on Magnetics, Vol. 31, No. 3, 1995, pp. 19201923.

    • Search Google Scholar
    • Export Citation
  • [20]

    Kuczmann M. , Budai T., Kovács G., Marcsa D., Friedl G., Prukner P., Unger T., Tomozi Gy. Application of PETSC and other useful packages in finite element simulation, Pollack Periodica, Vol. 8, No. 2, 2013, pp. 141148.

    • Search Google Scholar
    • Export Citation
  • [21]

    Castro J. , Andrada O., Blanque B. Minimization of torque ripple in switched reluctance motor drives using direct instantaneous torque control, Proceedings of International Conference in Renewable Energies and Power Quality (ICREPQ’12), Santiago de Compostela, Spain, 28-30 March, 2012, pp. 15.

    • Search Google Scholar
    • Export Citation
  • [22]

    Agros2D, http://www.agros2d.org/ (Last visited 6 February 2016).

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2020 2 0 0
Jan 2021 0 0 0
Feb 2021 1 0 0
Mar 2021 0 0 0
Apr 2021 2 0 0
May 2021 0 0 0
Jun 2021 5 0 0