View More View Less
  • 1 University of Miskolc
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

This paper deal with the overall heat transfer process and confrontation of experimental measurements and their numerical solutions on simplified model, inside the horizontal scraped surface heat exchanger. The experimental measurements were done on two horizontal scraped surface heat exchangers connected in series. As a product was thermally treated water, heated by vapor in the first stage and cooled by cold water in the second stage. Applied mass flow of the product: m=250, 500, 750, 1000 kgh−1 and rotary velocity of the shaft, scraper blades: rpm=20, 30, (45), 60, 90 min−1. For numerical analyses the simplified model was used, with taking only the area between the heat transfer tube, and the shaft with an aim to compare the result to experimental measurements and validate the obtained overall heat exchange, as justify the simplification. As a results from experimental measurements were obtained the correlations for Nusselt number in a form of Nu=f(Re,Pr,ηf/ηw). Based on the confrontation of results, it can be stated that the level of simplification used at numerical solutions, gives still an acceptable accuracy of overall heat transfer values. From numerical simulations were obtained further results as the velocity, temperature fields, which were used to make certain adaptation on proposed construction and their examination by additional numerical simulations. All these acquired results lead to better understanding the overall process inside the horizontal scraped surface heat exchangers and the proposed construction of mutators can increase the efficiency of heat transfer process for many products in a real processing.

  • [1]

    Huggins F. E. Effect of scrapers on heating, cooling and mixing, Ind. Eng. Chem, Vol. 23, No. 7, 1931, pp. 749-753.

  • [2]

    Latinen G. A. Discussion of the paper: Correlation of scraped film heat transfer in the votator by Skelland A. H. Chem.Eng. Sci, Vol. 9, 1959. pp. 263266.

    • Search Google Scholar
    • Export Citation
  • [3]

    Harriot P. Heat transfer in scraped-surface exchangers, Chem. Eng. Progr. Symp. Ser, Vol. 54, 1959, pp. 197-139.

  • [4]

    Skelland A. H. P. Correlation of scraped-film heat transfer in the votator, Chem. Eng. Sci, Vol. 7, 1958, pp. 166-175.

  • [5]

    Weisser H. Untersuchungen zum Wärmeübergang im Kratzkühler, Karlsruhe Universität, Germany, 1972.

  • [6]

    Härröd M. Flow patterns, mixing effects and heat transfer in scraped heat exchangers, Dept. of Food Science, Chalmers University of Technology, Göteborg, Sweden and SIK, The Sweden Institute for Food Research, 1988.

    • Search Google Scholar
    • Export Citation
  • [7]

    Härröd M. Methods to distinguish between laminar and vortical flow in scraped surface heat exchangers, J. Food Process Eng, Vol. 13, No. 1, 1990, pp. 39-57.

    • Search Google Scholar
    • Export Citation
  • [8]

    Tero T. Suspension melt crystallization in tubular and scraped surface heat exchangers, Mathematisch-Naturwissenschaftlich-Technischen Fakultät der Martin-Luther-Universität Halle-Wittenberg, 2004.

    • Search Google Scholar
    • Export Citation
  • [9]

    Pascal M. R. , Ravalet F., Delfos R., Witkamp G. J. Measurement of flow field and wall temperature distribution in a scraped surface heat exchanger crystallizer, in 5th Europian Thermal-Sciences Conference, Eindhoven, The Netherlands, 18–22 May 2008, Paper 2.

    • Search Google Scholar
    • Export Citation
  • [10]

    Wilson S. K. , Duffy B. R., Lee M. E. M. A mathematical model of fluid flow in a scrapedsurface heat exchanger, J. Eng. Math, Vol. 57, No. 4, 2007, pp. 381-405.

    • Search Google Scholar
    • Export Citation
  • [11]

    Trommelen A. M. Physical aspects of scraped surface heat exchangers, Delft University of Technology, 1970.

  • [12]

    Bongers P. M. M. A heat transfer model of a scraped surface heat exchanger for ice cream, in 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, Garmisch-Partenkirchen, Germany, 9–13 July 2006, Computer Aided Chem. Eng, Vol. 21, 2006, pp. 539-544.

    • Search Google Scholar
    • Export Citation
  • [13]

    Degoede R. Crystallization of paraxylene with scraped surface heat exchangers, Technische University Delft (Netherlands), 1988.

  • [14]

    Pyle D. L. , Sun K. H., Lee M. E. M., Please C. P., Fitt A. D., Wilson S. K., Duffy B. R., Hall-Taylor N. Effective scraping in a scraped surface heat exchanger: some fluid flow analysis, International Congress on Engineering and Food, Montpellier, France, 7–11 March 2004.

    • Search Google Scholar
    • Export Citation
  • [15]

    Zdravec M. , Basic S., Hribersek M. The influence of rotating domain size in a rotating frame of reference approach for simulation of rotating impeller in a mixing vessel, J. Eng. Sci. Technol, Vol. 2, No. 2, 2007, pp. 126-138.

    • Search Google Scholar
    • Export Citation
  • [16]

    Fitt A. D. , Lee M. E. M., Please C. P. Analysis of heat flow and ‘channeling’ in a scrapedsurface heat exchanger, J. Eng. Math, Vol. 57, No. 4, 2007, pp. 407-422.

    • Search Google Scholar
    • Export Citation
  • [17]

    Pascual M. R. , Ravelet, F., Delfos R., Derksen, J. J., Witkamp, G. J. Computational fluid dynamics and measurement of flow field and wall temperature distribution in a scraped heat exchanger crystallizer, in Proceedings of the 17th International Symposium on Industrial Crystallization, Maastricht, The Netherlands, 14–17 September 2008, pp. 1889-1896.

    • Search Google Scholar
    • Export Citation
  • [18]

    Solano J. P. , García A., Vicente P. G., Viedma A. Performance evaluation of a zero-fouling reciprocating scraped-surface heat exchanger, Heat Transf. Eng, Vol. 32, No. 3–4, 2011, pp. 331-338.

    • Search Google Scholar
    • Export Citation
  • [19]

    Aloui F. , Rehimi F., Dumont E., Legrand J. Inverse method applied for the determination of the wall shear rate in a scraped surface heat exchanger using the electrochemical technique, Int. J. Electrochem. Sci, No. 3, 2008, pp. 676-690.

    • Search Google Scholar
    • Export Citation
  • [20]

    Pascual M. R. , Derksen J. J., Van Rosmalen G. M., Witkamp G. J. Flow and particle motion in scraped heat exchanger crystallizers, Chem. Eng. Sci, Vol. 64, No. 24, 2009, pp. 5153-5161.

    • Search Google Scholar
    • Export Citation
  • [21]

    Pascual M. R. , Ravelete F., Delfos R., Derksen J. J., Witkamp G. J. Large eddy simulations and stereoscopic particle image velocimetry measurements in a scraped heat exchanger crystallizer geometry, Chem. Eng. Sci, Vol. 64, No. 9, 2009, pp. 2127-2135.

    • Search Google Scholar
    • Export Citation
  • [22]

    Blel W. , Legentilhomme P., Benezech T., Fayolle F. Cleanabilty study of a scraped surface heat exchanger, Food Bioprodducts Processing, Vol. 91, No. 2, 2013, pp. 95-102.

    • Search Google Scholar
    • Export Citation
  • [23]

    Nilay G. , Prexa P. Thermal analysis of scraped surface heat exchanger used in food industries, Int. J. Innov. Sci. Eng. Technol, Vol. 2, No. 5, 2015, pp. 622-627.

    • Search Google Scholar
    • Export Citation
  • [24]

    Arellano M. , Benkhelifa H., Alvarez G., Flick D. Coupling population balance and residence time distribution for the ice crystallization modeling in a scraped surface heat exchanger, Chem. Eng. Sci, Vol. 102, 2013, pp. 502-513.

    • Search Google Scholar
    • Export Citation
  • [25]

    Sun K. H. , Pyle D. L., Fitt A. D., Please C. P., Baines M. J., Hall-Taylor N. Numerical study of 2D heat transfer in a scraped surface heat exchanger, Computers & Fluids, Vol. 33, No. 5-6, 2004, pp. 869-880.

    • Search Google Scholar
    • Export Citation
  • [26]

    Yataghene M. , Legrand J. A 3D-CFD model thermal analyses within a scraped surface heat exchanger, Computers & Fluids, Vol. 71, 2013, pp. 380-399.

    • Search Google Scholar
    • Export Citation
  • [27]

    D’Addio L. , Carotenuto C., Di Natale F., Nigro R. Heating and cooling of hazelnut paste in alternate blades scraped surface heat exchangers, J. of Food Eng, Vol. 115, No. 2, 2013, pp. 182-189.

    • Search Google Scholar
    • Export Citation
  • [28]

    Rainieri S. , Bozzoli F., Cattani L., Vocale P. Parameter estimation applied to heat transfer characterization of scraped surface heat exchangers for food applications, J. of Food Eng, Vol. 125, 2014, pp. 147-156.

    • Search Google Scholar
    • Export Citation
  • [29]

    Dehkordi K. S. , Fazilati M. A., Hajatzadeh A. Surface scraped heat exchanger for cooling Newtonian fluids and enhancing its heat transfer characteristic, a review and numerical approach, Applied Thermal Eng, Vol. 87, 2015, pp. 56-65.

    • Search Google Scholar
    • Export Citation
  • [30]

    Nikolajev L. N. Allgemeine Gleichung für den Wärmeübergang in kontinuierlich arbeitenden, röhrenförmigen kratz apparaten, Pitschev Technol., Vol. 3, 1965, pp. 127-129.

    • Search Google Scholar
    • Export Citation
  • [31]

    Pálka R. The kinetics of heat transfer at the heat transfer surface by mechanically aided boundary layer, (in Slovak) Slovenská Technická Univerzita v Bratislave, Strojnícka Fakulta, 1999.

    • Search Google Scholar
    • Export Citation
  • [32]

    Devečka V. Contribution to the problem of the kinetics of heat transfer on the rotary heat transfer surfaces, (in Slovak) Slovenská Technická Univerzita v Bratislave, Strojnícká Fakulta (SjF STU), 1994.

    • Search Google Scholar
    • Export Citation
  • [33]

    Kulatschinski A. Wärmeaustausch in horizontalen, zylindrischen Wärmeaustauschern, Molochn. Prom, Vol. 26, No. 2, 1962, pp. 11-15.

  • [34]

    Karches T. Detection of dead-zones with analysis of flow pattern in open channel flow, Pollack Periodica, Vol. 7, No. 2, 2012, pp. 139-146.

    • Search Google Scholar
    • Export Citation
  • [35]

    Krejčí T. , Koudelka T., Kruis J. Numerical modeling of coupled hydro-thermo-mechanical behavior of concrete structures, Pollack Periodica, Vol. 10, No. 1, 2012, pp. 19-30.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 9 0 0
Sep 2020 10 0 0
Oct 2020 4 0 0
Nov 2020 11 7 1
Dec 2020 22 1 2
Jan 2021 7 1 2
Feb 2021 0 0 0