View More View Less
  • 1 Budapest University of Technology and Economics, Műegyetem rakpart 3. Hungary 1111
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

The paper addresses the determination of a stiffness-temperature correction model for the use in a mechanistic overlay design method, developed at the Department of Highway and Railway Engineering, Budapest University of Technology and Economics. Eleven models are selected and evaluated based on 215 laboratory stiffness test results at various temperatures of 47 different AC22 binder course type mixes. As the results showed, for the rough temperature correction of Hungarian binder course mixes for the use in the proposed design method; the model used by the AASHTO 1993 pavement design method is most accurate based on the standard error of the estimate of the selected models.

  • [1]

    e-UT 06.03.13 [ÚT 2–1.202:2005], Design of road pavement structures and overlay design with asphalt surfacings, (in Hungarian) Hungarian Standard, Hungarian Roads Society, 2005.

    • Search Google Scholar
    • Export Citation
  • [2]

    Gribovszki Z. , Igazvölgyi Z., Kalicz P., Pethő L., Kisfaludi B., Tóth C., Markó G., Soós Z., Péterfalvi J., Szentpéteri I., Primusz P., Tódor D. Study of alternative design methods and principles for the introduction of alternative methods,(in Hungarian) Research Report for the Hungarian Transport Administration (KKK), 2016.

    • Search Google Scholar
    • Export Citation
  • [3]

    Karoliny M. Overlay design of asphalt pavements, Summary, Útügyi Lapok, Vol. 7, paper 5, 2016.

  • [4]

    Fi I. , Szentpéteri I. Mechanical-empirical overlay design method for asphalt pavements, (in Hungarian) Magyar Építűipar Vol. 64, No. 3, 2014, pp. 114-119.

    • Search Google Scholar
    • Export Citation
  • [5]

    Fi I. , Szentpéteri I. A mechanistic-empirical approach for asphalt overlay design of asphalt pavement structures, Periodica Polytechnica, Civil Engineering, Vol. 58, No. 1, 2014, pp. 55-62.

    • Search Google Scholar
    • Export Citation
  • [6]

    Soós Z. , Tóth C., Szentpéteri I., Pethő L. Advanced pavement overlay design using the general mechanistic method, Proceedings of the Second International Conference on Infrastructure Management, Assessment and Rehabilitation Techniques, Sharjah, United Arab Emirates, 8–10 March 2015, pp. 88-94.

    • Search Google Scholar
    • Export Citation
  • [7]

    Soós Z. , Igazvölgyi Z., Tóth C., Pethő L. Mechanistic asphalt overlay design method for heavy duty pavements, IV Proceedings of the Conference on Road and Rail Infrastructure, CETRA 2016, Sibenik, Croatia, 23–25 May 2016, pp. 173-179.

    • Search Google Scholar
    • Export Citation
  • [8]

    Pronk A. C. Equivalent layer theories, (in Dutch) Internal Report TW-N-86-42, Road and Hydraulic Engineering Division, The Netherlands, 1986.

    • Search Google Scholar
    • Export Citation
  • [9]

    Bocz P. The effect of stiffness and duration parameters to the service life of the pavement structure, Periodica Polytechnica, Civil Engineering, Vol. 53, No. 1, 2008, pp. 35-41.

    • Search Google Scholar
    • Export Citation
  • [10]

    Pethő L. Influence of temperature distribution on the design of pavement structures, Periodica Polytechnica, Civil Engineering, Vol. 52, No. 1, 2008, pp. 45-53.

    • Search Google Scholar
    • Export Citation
  • [11]

    Füleki P. Improving pavement performance by compact-asphalt technology, Pollack Periodica, Vol. 4, No. 3, 2009, pp. 111-120.

  • [12]

    Adorjányi K. , Füleki P. Performance parameters and stress sensitivity of bitumen at high temperature, Pollack Periodica, Vol. 7, No. 2, 2012, pp. 109-116.

    • Search Google Scholar
    • Export Citation
  • [13]

    Sachs S. , Vandenbossche J. M., Li Z., Barman, M. Accounting for temperature susceptibility of asphalt stiffness when designing bonded concrete overlays of asphalt pavements, Journal of Transportation Engineering, Vol. 142, No. 10, 2016, Paper No. 04016040.

    • Search Google Scholar
    • Export Citation
  • [14]

    Zhang J. , Liu G., Hu Z., Zhu C., Pei J., Long J. Effects of temperature and loading frequency on asphalt and filler interaction ability, Construction and Building Materials Vol. 124, 2016, pp. 1028-1037.

    • Search Google Scholar
    • Export Citation
  • [15]

    Falchetto A. C. , Turos M. I., Marasteanu M. O. Investigation on asphalt binder strength at low temperatures, Road Materials and Pavement Design Vol. 13, No. 4, 2012, pp. 804-816.

    • Search Google Scholar
    • Export Citation
  • [16]

    Fi I. , Pethő L. Calculation of the equivalent temperature of pavement structures, Periodica Polytechnica, Civil Engineering, Vol. 54, No. 2, 2008, pp. 91-96.

    • Search Google Scholar
    • Export Citation
  • [17]

    Kubányi Z. (Ed.) Determination of temperature and seasonal correction for dynamic deflection measurements, (in Hungarian) Research Report, Közlekedéstudományi Intézet, 1996.

    • Search Google Scholar
    • Export Citation
  • [18]

    COST 336, Use of falling weight deflectometers in pavement evaluation, Final Report 4, FWD Project Level Guide, 1999.

  • [19]

    Pszczola M. , Judycki J., Rys D., Evaluation of pavement temperatures in Poland during winter conditions, Transportation Research Procedia, Vol. 14, 2016, pp. 738-747.

    • Search Google Scholar
    • Export Citation
  • [20]

    Jansen D. Temperaturkorrektur von mit dem Falling-Weight-Deflectometer gemessenen Deflexionen auf Asphaltbefestigungen, Institut für Straßenbau und Verkehrswesen, Universität Duisburg Essen, 2009.

    • Search Google Scholar
    • Export Citation
  • [21]

    Wang T. H. , Su L. J., Zhai J. Y. A case study on diurnal and seasonal variation in pavement temperature, International Journal of Pavement Engineering, Vol. 15, No. 5, 2014, pp. 402-408.

    • Search Google Scholar
    • Export Citation
  • [22]

    Ureczky J. , Tóth C. Effect of temperature on deflections, (in Hungarian) Közúti és Mélyépítési Szemle, Vol. 58, No. 3–4, 2008, pp. 9-14.

    • Search Google Scholar
    • Export Citation
  • [23]

    Wagberg L. G. Development of a deflection model, (in Dutch) Vägoch Transportforskningsinstitut, Neddelande 916, The Netherlands, 2001.

    • Search Google Scholar
    • Export Citation
  • [24]

    SHRP procedure for temperature correction of maximum deflections, Strategic Highway Research Program, Research No. SHRP-P-654, Final Report, Washington, USA, 1993.

    • Search Google Scholar
    • Export Citation
  • [25]

    García J. A. R. , Castro M. Analysis of the temperature influence on flexible pavement deflection, Construction and Building Materials, Vol. 25, No. 8, 2011, pp. 3530-3539.

    • Search Google Scholar
    • Export Citation
  • [26]

    Ullidtz P. , Peattie K. R. Programmable calculators in the assessment of overlays and maintenance strategies, Proceedings of the 5th International Conference on Structural Design of Asphalt Pavements, Delft, the Netherlands, 23–26 August 1982, pp. 671-681.

    • Search Google Scholar
    • Export Citation
  • [27]

    Johnson A. M. , Baus R. L. Alternative method for temperature correction of backcalculated equivalent pavement moduli, Transportation Research Board, Research No. 1355, 1992, pp. 75-81.

    • Search Google Scholar
    • Export Citation
  • [28]

    Baltzer S. , Jansen J. M. Temperature correction of asphalt-moduli for FWD measurements, Proceedings of the 4th International Conference on Bearing Capacity of Roads and Airfields, Minneapolis, USA, 17–21 August 1994, pp. 753-768.

    • Search Google Scholar
    • Export Citation
  • [29]

    AASHTO Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials, Washington DC, 1993.

    • Search Google Scholar
    • Export Citation
  • [30]

    Kim Y. R. , Hibbs B. O., Lee Y. C., Temperature correction of deflections and backcalculated asphalt concrete moduli, Transportation Research Board, Research No. 1473, 1995, pp. 55-62.

    • Search Google Scholar
    • Export Citation
  • [31]

    RDO-Asphalt 09, Guidelines for mathematical dimensioning of foundation of traffic surfaces with a course asphalt surface, (Draft version), (in German) German Standard, 2009.

  • [32]

    Stubstad R. , Lukanen E., Richter C., Baltzer S. Calculation of AC layer temperatures from FWD field data, Proc. 5th International Conference on the Bearing Capacity of Roads and Airfields, Trondheim, Norway, 6–8 July 1998, pp. 919-928.

    • Search Google Scholar
    • Export Citation
  • [33]

    Lukanen E. O. , Stubstad R. N., Briggs R. Temperature predictions and adjustment factors for asphalt pavement, Publication No. FHWA-RD-98-085, Federal Highway Administration, McLean, USA, 2000.

    • Search Google Scholar
    • Export Citation
  • [34]

    Chen D.H. , Bilyeu J., Lin H. H., Murphy M. Temperature correction on falling weight deflectometer measurements, Transportation Research Board, No. 1716 pp. 3039, 2000.

    • Search Google Scholar
    • Export Citation
  • [35]

    Chang J. R. , Lin J. D., Chung W. C., Chen D. H. Evaluating the structural strength of flexible pavements in Taiwan using the falling weight deflectometer, International Journal of Pavement Engineering, Vol. 3, No. 3, 2002, pp. 131-141.

    • Search Google Scholar
    • Export Citation
  • [36]

    EVERSERIES User's Guide, Pavement Analysis, Computer Software and Case Studies, Washington State Department of Transport, 2005.

  • [37]

    Bearing capacity of roads, Measurement of deflection, (in Hungarian) Hungarian Standard, MSZ 2509/4, 1989.

  • [38]

    Bituminous mixtures, Test methods for hot mix asphalt, Part 6, Determination of bulk density of bituminous specimens, (in Hungarian) Hungarian Standard, MSZ EN 12697-6:2012, 2012.

    • Search Google Scholar
    • Export Citation
  • [39]

    Bituminous mixtures, Test methods for hot mix asphalt, Part 26, Stiffness, (in Hungarian) Hungarian Standard, MSZ EN 12697–26:2005, 2005.

    • Search Google Scholar
    • Export Citation
  • [40]

    Pethő L. Temperature profile in asphalt pavements and its effect on the fatigue and technological design of pavement layers, (in Hungarian) PhD. Thesis, Budapest University of Technology and Economics, 2008.

    • Search Google Scholar
    • Export Citation
  • [41]

    Tóth C. The effect of frequency, temperature and gradation on the stiffness of asphalt mixes, (in Hungarian) PhD. Thesis, Budapest University of Technology and Economics, 2010.

    • Search Google Scholar
    • Export Citation
  • [42]

    Ávár V. Determination of fatigue performance of asphalt mixed based on master curves determined using reduced number of test results, (in Hungarian) BSC Diploma Work, Budapest University of Technology and Economics, 2010.

    • Search Google Scholar
    • Export Citation
  • [43]

    Szentpéteri I. , Comparison of master curves of asphalt mixes before and after aging, (in Hungarian) BSC Diploma Work, Budapest University of Technology and Economics, 2010.

    • Search Google Scholar
    • Export Citation
  • [44]

    Ahmed M. U. , Rahman A., Islam M. R., Tarefder R. A. Combined effect of asphalt concrete cross-anisotropy and temperature variation on pavement stress-strain under dynamic loading, Construction and Building Materials, Vol. 93, 2015, pp. 685-694.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 2 1 1
Dec 2020 1 1 2
Jan 2021 2 0 0
Feb 2021 1 0 0
Mar 2021 2 0 0
Apr 2021 0 0 0
May 2021 0 0 0