View More View Less
  • 1 Budapest University of Technology and Economics, H-1521 Budapest, Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

The paper presents a photovoltaic system auto sizing algorithm with irradiance and shading calculation, which uses the photovoltaic geographical information system database. This calculation step is a very labor intensive task, which require a lot of iterative design time to find the optimum alternative. Based on measurement data, monthly irradiance correction matrixes are simulated to completely describe the yearly irradiance loss caused by shading of the nearby objects. As result, a function between the shaded area and the yearly energy loss can be obtained. Furthermore, photovoltaic modules can be auto-allocated on a given area according to the boundary conditions. Taking into consideration the photovoltaic installers’ pricing system, a complete photovoltaic auto-sizing algorithm can be presented, which greatly reduces the time spent on quotation writing. This paper also includes a battery energy storage sizing algorithm according to the given economic conditions, which extends the capability of the photovoltaic system auto-sizing algorithm.

  • [1]

    Raza M. Q. , Nadarajah M., Ekanayake C. On recent advances in PV output power forecast, Solar Energy, Vol. 136, 2016, pp. 125144.

  • [2]

    Ineichen P. , Barroso C. S., Geiger B., Hollmann R., Marsouin A., Müller R. Satellite application facilities irradiance products: hourly time step comparison and validation over Europe, International Journal of Remote Sensing, Vol. 30, No. 21, 2009, pp. 55495571.

    • Search Google Scholar
    • Export Citation
  • [3]

    Huld T. , Müller R., Gambardella A. A new solar radiation database for estimating PV performance in Europe and Africa, Solar Energy, Vol. 86, No. 6, 2012, pp. 18031815.

    • Search Google Scholar
    • Export Citation
  • [4]

    Lu H. , Lu L., Wang Y. Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building, Applied Energy, Vol. 180, 2016, pp. 2736.

    • Search Google Scholar
    • Export Citation
  • [5]

    de Simón-Martín M. D. íez-Mediavilla M. Alonso-Tristán C. Shadow-band radiometer measurement of diffuse solar irradiance, Calculation of geometrical and total correction factors, Solar Energy, Vol. 139, 2016, pp. 8599.

    • Search Google Scholar
    • Export Citation
  • [6]

    Zaihidee F. M. , Mekhilef S., Seyedmahmoudian M., Horan B. Dust as an unalterable deteriorative factor affecting PV panel’s efficiency: Why and how, Renewable and Sustainable Energy Reviews, Vol. 65, 2016, pp. 12671278.

    • Search Google Scholar
    • Export Citation
  • [7]

    Hollinger R. , Wille-Haussmann B., Erge T., Sönnichsen J., Stillahn T., Kreifels K., Wittwer K. Kurzgutachten zur Abschätzung und Einordnung energiewirtschaftlicher, ökonomischer und anderer Effekte bei Förderung von objektgebunden elektrochemischen Speichern, SPEICHERSTUDIE 2013, Fraunhofer-Institut für Solare Energiesysteme, ISE, 2013.

    • Search Google Scholar
    • Export Citation
  • [8]

    Lorenz C. , Schröder G. Wirtschaftlichkeit Batteriespeicher, Leipziger Institut für Energie GmbH, Leipzig, Germany, 2014.

  • [9]

    Sonnenbatterie Eco Battery Storage OEM Specification, (http://www.seacoastenergy.com/new_items/Resources/sonnen_eco_US%20Datasheet_March%202016.pdf, (last visited 2 June 2016).

  • [10]

    Won M. S. , Ju K. S., Hur D. Optimized installation and operations of battery energy storage system and electric double layer capacitor modules for renewable energy based intermittent generation, Journal of Electrical Engineering Technology, Vol. 8, No. 2, 2013, pp. 238243.

    • Search Google Scholar
    • Export Citation
  • [11]

    European Energy Exchange Market Data, 2015, http://www.eex.com/en/ (last visited 2 September 2016).

  • [12]

    Beaudin M. , Zareipour H. Home energy management systems: A review of modeling and complexity, Renewable and Sustainable Energy Reviews, Vol. 45, 2015, pp. 318335.

    • Search Google Scholar
    • Export Citation
  • [13]

    Sharma V. , Chandel S. S. Performance and degradation analysis for long term reliability of solar photovoltaic systems, A review, Renewable and Sustainable Energy Reviews, Vol. 27, 2013, pp.753767.

    • Search Google Scholar
    • Export Citation
  • [14]

    Zakeri B. , Syri S. Electrical energy storage systems: A comparative life cycle cost analysis, Renewable and Sustainable Energy Reviews, Vol. 43, 2015, pp. 569596.

    • Search Google Scholar
    • Export Citation
  • [15]

    http://www.bundesnetzagentur.de/cln_1411/DE/Sachgebiete/ElektrizitaetundGas/Unterneh men_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen, (last visited 9 September 2015).

  • [16]

    Kota L. , Jarmai K. Efficient algorithms for optimization of objects and systems, Pollack Periodica, Vol. 9, No. 1, 2014, pp. 121132.

    • Search Google Scholar
    • Export Citation
  • [17]

    Wirth H. Aktuelle Fakten zur Photovoltaik in Deutschland, Fraunhofer ISE, 2016.

  • [18]

    Sharp NC-RC260 PV module OEM Specification, http://www.sharp-cee.com/ cps/rde/xchg/scee/hs.xsl/-/html/product-details-solar-modules-2189.htm?product=NDRC260, (last visited 2 September 2016).

  • [19]

    ABB Trio Inverter OEM Specification, https://www.google.hu/search?q=abb+trio&oq=abb+trio&aqs=chrome..69i57j69i60l5.2836j0j7&sourceid=chrome&ie=UTF-8, (last visited 22 October 2016).

  • [20]

    Orosz T. , Sleisz Á., Tamus Z. Á. Metaheuristic optimization preliminary design process of core-form autotransformers, IEEE Trans. Magn. Vol. 52, No. 4, 2016, pp. 110.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 1 0 0
Sep 2020 9 1 1
Oct 2020 4 0 0
Nov 2020 0 4 1
Dec 2020 3 0 0
Jan 2021 0 0 0
Feb 2021 0 0 0