The aim of the paper is to investigate the hygrothermal properties of a newly developed ultra-lightweight polystyrene concrete, based on laboratory measurements. It describes the measuring process of thermal conductivities, and determines the declared thermal conductivity. The temperature and moisture conversion coefficients are determined, and new approximate functions are introduced. The paper describes the sorption and desorption isotherms, and gives polynomial approximate functions. The paper also investigates the temperature dependency of sorption curves. It determines the water absorption coefficient and the free water saturation. Furthermore, it describes the measuring process of the water vapor permeability. The water vapor resistance factor and water vapor diffusion-equivalent air layer thickness are calculated.
Babu K. G. , Babu D. S. Behavior of lightweight expanded polystyrene concrete containing silica fume, Cement and Concrete Research, Vol. 33, No. 5, 2003, pp. 755–762.
Dissanayake D. M. K. W. Jayasinghe C. , Jayasinghe M. T. R. A comparative embodied energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels, Energy and Buildings, Vol. 135, 2017, pp. 85–94.
Čuláková M. , Šenitková I., Paulíková A. optimization of construction solutions for green building, Pollack Periodica, Vol. 7, No. 3, 2012, pp. 33–44.
Sayadi A. A. , Tapia J. V., Neitzert T. R., Clifton G. C. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete, Construction and Building Materials, Vol. 112, 2016, pp. 716–724.
Hegyi P. , Dunai L. Experimental study on ultra-lightweight-concrete encased cold-formed steel structures, Part I, Stability behavior of elements subjected to bending, Thin-Walled Structures, Vol. 101, 2016, pp. 75–84.
Lublóy É. , Balázs L.Gy., Kopecskó K., Tóth E., Dunai L., Hegyi P., Drávucz O. Thermal insulation capacity of concretes with expanded polystyrene aggregate, The Fourth International FIB Congress, Mumbai, India, 10-14 February 2014, pp. 750–751.
Laukaitis A. , Žurauskas R., Kerien J. The effect of foam polystyrene granules on cement composite properties, Cement and Concrete Composites, Vol. 27, No. 1, 2005, pp. 41−47.
Chikhi A. , Belhamri A., Glouannec P., Magueresse A. Experimental study and modeling of hygro-thermal behavior of polystyrene concrete and cement mortar, Application to a multilayered wall, Journal of Building Engineering, Vol. 7, 2016, pp. 183–193.
Yu Q. L. , Spiesz P., Brouwers H. J. H. Ultra-lightweight concrete: conceptual design and performance evaluation, Cement and Concrete Composites, Vol. 61, 2015, pp. 18–28.
Bozsaky D. Comparative analysis of natural and synthetic thermal insulation materials (in Hungarian) PhD Thesis, Infrastrukturális Rendszerek Modellezése és Fejlesztése Multidiszciplináris Műszaki Tudományi Doktori Iskola, Műszaki Tudományi Kar, Széchenyi István Egyetem, 2011.
Kovács K. Durability of polystyrene concrete, (in Hungarian) in Durability of concrete structures, Balázs Gy., Balázs L. Gy. (Eds), 2008, pp. 257–277.
Krus M. Moisture transport and storage coefficients of porous mineral building materials, Theoretical principals and new test methods, Fraunhofer IRB Verlag, Stuttgart, 1996.
Le A. T. , Samri D., Rahim M., Douzane O., Promis G., Langlet T. Effect of temperaturedependent sorption characteristics on the hygrothermal behavior of hemp concrete, Energy Procedia, Vol. 78, 2015, pp. 1449–1454.
Krejčí T. , Koudelka T., Kruis J. Numerical modeling of coupled hydro-thermo-mechanical behavior of concrete structures, Pollack Periodica, Vol. 10, No. 1, 2015, pp. 19–30.
Künzel H. M. Simultaneous heat and moisture transport in building components, One-and two-dimensional calculation using simple parameters, IRB-Verlag Stuttgart, 1995.
Nagy B. Laboratory measurements of construction materials for dynamic heat and moisture transport modeling, (in Hungarian) Műszaki Tudomány az Észak - Kelet Magyarországi Régióban 2015 Konferencia, Debrecen, Hungary, 11 June 2015, pp. 446–452.
Csanaky J. E. Laboratory examination and qualification of natural materials, (in Hungarian) Magyar Építőipar, Vol. LI, No. 5, 2014, pp. 187−190.
WUFI Pro, 2D, Plus, Details: Physics, moisture transport in building materials, http://www.wufi-wiki.com/mediawiki/index.php/Details:Physics#Moisture_Transport, (last visited 25 November 2016).
MSZ EN ISO 10456:2007, Building materials and products, Hygrothermal properties, Tabulated design values and procedures for determining declared and design thermal values (ISO 10456:2007).
Wufi Pro 6.0 online help, (last visited 25 November 2016).
Bourdot A. , Promis G., Le A. D. T., Douzane O., Benazzouk A., Rosquoët F., Langlet T. Hygrothermal properties of blocks based on eco-aggregates: Experimental and numerical study, Construction and Building Materials, Vol. 125, 2016, pp. 279–289.
Orosz M. . Temperature and moisture dependent thermal conductivity of a polystyrene concrete wall panel, (in Hungarian) Műszaki Tudomány az Észak - Kelet Magyarországi Régióban 2015 Konferencia, Debrecen, Hungary, 11 June 2015, pp. 114−119.
MSZ EN ISO 12571:2013, Hygrothermal performance of building materials and products, Determination of hygroscopic sorption properties (ISO 12571:2013).
EN ISO 15148:2002 Hygrothermal performance of building materials and products, Determination of water absorption coefficient by partial immersion (ISO 15148:2002).
MSZ EN ISO 12572:2001, Hygrothermal performance of building materials and products, Determination of water vapor transmission properties (ISO 12572:2001).