View More View Less
  • 1 Széchenyi István University, Egyetem tér 1, H-9026 Győr, Hungary
  • 2,3 Faculty of Civil Engineering Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

The aim of the paper is to investigate the hygrothermal properties of a newly developed building panel, made of ultra-lightweight concrete, encased cold-formed steel elements. It describes the hygrothermal simulations of the wall and roof panels, and based on results, the heat transfer coefficients and linear thermal transmittances are determined. The hygrothermal behavior of main structural joints (wall corner, wall-roof and wall-ground connections) is also simulated using real indoor and outdoor conditions. For validating the results, a model building was investigated.

  • [1]

    Tuca I. , Ungureanu V., Ciutina A., Dubina D. Life-cycle assessment of a steel framed family house, Pollack Periodica, Vol. 7, No. 1, 2012, pp. 1526.

    • Search Google Scholar
    • Export Citation
  • [2]

    Orosz M. , Nagy B. Tóth E. Hygrothermal behavior of ultra-lightweight polystyrene concrete, Pollack Periodica, Vol. 12, No. 2, pp. 5366.

    • Search Google Scholar
    • Export Citation
  • [3]

    Hegyi P. , Dunai L. Experimental study on ultra-lightweight-concrete encased cold-formed steel structures Part I: Stability behavior of elements subjected to bending, Thin-Walled Structures, Vol. 101, 2016, pp. 7584.

    • Search Google Scholar
    • Export Citation
  • [4]

    Hegyi P. , Dunai L. Experimental investigations on ultra-lightweight-concrete encased coldformed steel structures, Part II, Stability behavior of elements subjected to compression, Thin-Walled Structures, Vol. 101, 2016, pp. 100108.

    • Search Google Scholar
    • Export Citation
  • [5]

    Yu Q. L. , Spiesz P., Brouwers H. J. H. Ultra-lightweight concrete: conceptual design and performance evaluation, Cement and Concrete Composites, Vol. 61, 2015, pp. 1828.

    • Search Google Scholar
    • Export Citation
  • [6]

    Xu Y. , Jiang L., Xu J., Li Y. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick, Construction and Building Materials, Vol. 27, No. 1, 2012, pp. 3238.

    • Search Google Scholar
    • Export Citation
  • [7]

    Dissanayake D. M. K. W. , Jayasinghe C., Jayasinghe M. T. R. A comparative embodied energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels, Energy and Buildings, Vol. 135, 2017, pp. 8594.

    • Search Google Scholar
    • Export Citation
  • [8]

    Künzel H. M. , Holm A. H., Krus M., Künzel I. H. M. Hygrothermal properties and behaviour of concrete, WTA Almanach, Vol. 1, 2008, pp. 161181.

    • Search Google Scholar
    • Export Citation
  • [9]

    Krejčí T. , Koudelka T., Kruis J. Numerical modeling of coupled hydrothermo-mechanical behavior of concrete structures, Pollack Periodica, Vol. 10, No. 1, 2015, pp. 1930.

    • Search Google Scholar
    • Export Citation
  • [10]

    Cho B. , Park D., Kim J., Hamasaki H. Study on the heat-moisture transfer in concrete under real environment, Construction and Building Materials, Vol. 132, 2017, pp. 124129.

    • Search Google Scholar
    • Export Citation
  • [11]

    Künzel H. M. Simultaneous heat and moisture transport in building components, One-and two-dimensional calculation using simple parameters, IRB-Verlag, Stuttgart, 1995.

    • Search Google Scholar
    • Export Citation
  • [12]

    Széll M. (Ed.), Sustainable energy in design and education of building constructions, Terc Kereskedelmi és Szolgáltató Kft, Budapest, 2012.

    • Search Google Scholar
    • Export Citation
  • [13]

    Csanaky J. E. Energy efficient development of building constructions at the border of architectural and building physical design, PhD Thesis, Széchenyi István University, Gyűr, 2012.

    • Search Google Scholar
    • Export Citation
  • [14]

    Orosz M. , Csanaky J. E. Estimating the thermal bridge at wall corners with artificial neural network, Acta Technica Jaurinensis, Vol. 8, No. 3, 2015, pp. 230239.

    • Search Google Scholar
    • Export Citation
  • [15]

    Bakonyi, D., Dobszay, G. Simplified calculation of non-repeating thermal bridges of the typical Central-European small suburban houses, Pollack Periodica, Vol. 11, No. 3, 2016, pp. 4360.

    • Search Google Scholar
    • Export Citation
  • [16]

    Dunai L. , Hegyi P., Horváth L., Jakab S., Joó A. L., Kenéz Á., Opoldusz M., Tóth E., Nagy B. Task 7, Research of joints of panel constructions, R+D Report, Budapest, 2015.

    • Search Google Scholar
    • Export Citation
  • [17]

    Dunai L. , Tóth E., Nagy B., Orosz M. Development of polystyrene concrete encased lightweight steel frame structures, R+D Report, Task 8. Measurement of building physical parameters of structural joints, Budapest, 2015.

    • Search Google Scholar
    • Export Citation
  • [18]

    MSZ EN, ISO 10456:2007, Building materials and products, Hygrothermal properties, Tabulated design values and procedures for determining declared and design thermal values (ISO 10456:2007).

  • [19]

    Wójcik R. , Kosiński P. Seeming air tightness of construction partitions, Energy Procedia, Vol. 78, 2015, pp. 15191524.

  • [20]

    TNM Decree, No. 7/2006, http://net.jogtar.hu/jr/gen/hjegy_doc.cgi?docid=A0600007.TNM, (last visited 28 December 2016).

  • [21]

    MSZ 24140:2015, Power engineering dimensioning calculuses of buildings and building envelope structures.

  • [22]

    Nagy B. , Pintér A., Tóth E. Dynamic, environment-dependent building physical behavior of wall construction with mineral wool thermal insulation, Műszaki Ellenőr, Vol. V. No. 6, 2016, pp. 3035.

    • Search Google Scholar
    • Export Citation
  • [23]

    MSZ EN 15026:2007, Hygrothermal performance of building components and building elements, Assessment of moisture transfer by numerical simulation.

  • [24]

    Nagy B. , Szagri D. Dynamic heat and moisture transport modeling of industrial floors on different climates, Applied Mechanics and Materials, Vol. 861, 2017, pp. 271278.

    • Search Google Scholar
    • Export Citation
  • [25]

    MSZ EN ISO 6946, Building components and building elements, Thermal resistance and thermal transmittance, Calculation method (ISO 6946:2007).

  • [26]

    Hulme J. , Doran S. Hul BRE Report: In-situ measurements of wall U-values in English housing, Prepared for Alex Boss, DECC, 4th July 2014, Output number: 290-102, Authorized by John Riley, Department of Energy and Climate Change, 2014

    • Search Google Scholar
    • Export Citation
  • [27]

    Nagy B. Thermal calculation of ground contact structures, Correction factors of environment-and structure-dependent effects on the heat transfer coefficient, International Journal of Computational and Experimental Science and Engineering, Vol. 1, No. 1, 2015, pp. 2629.

    • Search Google Scholar
    • Export Citation
  • [28]

    Chikhi A. , Belhamri A., Glouannec P., Magueresse A. Experimental study and modeling of hygro-thermal behavior of polystyrene concrete and cement mortar, Application to a multilayered wall, Journal of Building Engineering, Vol. 7, 2016, pp. 183193.

    • Search Google Scholar
    • Export Citation
  • [29]

    Ryu D. W. , Ko J. W., Noguchi T. Effects of simulated environmental conditions on the internal relative humidity and relative moisture content distribution of exposed concrete, Cement and Concrete Composites, Vol. 33, No. 1, 2011, pp. 142153.

    • Search Google Scholar
    • Export Citation
  • [30]

    Orosz M. Comparison of ETICS and ventilated cladding system in terms of hygrothermal loads of mineral wool in Middle-Europe, In: Józsa J., Lovas T., Németh R. (Eds), Proceedings of the Conference of Junior Researchers in Civil Engineering 2012, Hungary, Budapest, Hungary, Budapest University of Technology and Economics, 19-20 June 2012, pp. 158162.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2020 9 0 0
Sep 2020 0 0 0
Oct 2020 1 0 0
Nov 2020 2 6 0
Dec 2020 2 1 1
Jan 2021 0 1 1
Feb 2021 0 0 0