View More View Less
  • 1 Faculty of Civil Engineering Slovak University of Technology in Bratislava, Slovakia
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

The overall purpose of this research was to model flow extraction from several groundwater network wells to control the excessive level of groundwater. The study was conducted in the Nitra Industrial Park, which is located in the northern part of the town of Nitra, where the confined groundwater table is situated very close to the terrain. The area of interest is a plain with a mean elevation of 140.0 m a.s.l. The groundwater can rise up to 140.5 and 143.0 m a.s.l. during the dry season, extreme climate conditions, or a flood wave in the Nitra River, respectively. In order to keep the level of the piezometric head below 140.0 m a.s.l. (as requested by the investor), there are already 38 wells realized around the area of interest with the proposed pumping rates.

The numerical groundwater modeling was applied using the TRIWACO simulation package for the given hydrological, geological and hydro-geological conditions. The transient simulation takes into account a Q 1000 historical discharge in the Nitra River and its possible impact on the groundwater. The paper will present numerical modeling results on the design of a drawdown system to lower the groundwater level to an acceptable elevation as well as parameters and uncertainties for the design purpose.

  • [1]

    Slovak Hydro-Meteorogical Institute (SHMI), Flood wave design for Q 1000, Nitra-rkm 65.790, Bratislava, 2015, www.shmu.sk, (last visited 14 May 2016).

  • [2]

    Horváth V. , Dovičin P., Hudec J., Barát J. Geological task, Final Report, Industrial Park, NR 400, No. 0915, Reg. No. 131/2015, Bratislava, 2015.

    • Search Google Scholar
    • Export Citation
  • [3]

    Soták J. , Vlčko J. Project DARWIN, Detailed engineering-geological survey, Final report, Treuhand Partner Austria (TPA), Ltd, Bratislava, 2015.

    • Search Google Scholar
    • Export Citation
  • [4]

    Hydrological data on the groundwater and surface water levels from the basic Slovak Hydro-Meteorological Institute observation networks, Bratislava, 2015, www.shmu.sk, (last visited 20 March 2016).

  • [5]

    Urbaník J. Graphic evaluation of ascending hydrodynamic tests in the locality of the Nitra Industrial Park (in Slovak), Values of hydraulic conductivity k and transmissivity T, Project report, INGEO Ltd, Žilina, 2015.

    • Search Google Scholar
    • Export Citation
  • [6]

    Franklin H. Z. , Schwartz W. Fundamentals of groundwater flow, The Ohio State University, Hermitage Publishing Service, 2003.

  • [7]

    Korkmaz S. , Pekkan E., Güney Y. Transient analysis with MODFLOW for developing water-diversion function, Journal of Hydrologic Enineering, Vol. 21, No. 6, 2016, pp. 05016009-105016009-11.

    • Search Google Scholar
    • Export Citation
  • [8]

    Barokova D. Simulation of the impact of selected structures on a groundwater level regime (in Slovak), PhD Thesis, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, 2014.

    • Search Google Scholar
    • Export Citation
  • [9]

    Červeňanská M. , Baroková D., Šoltész A. Modeling the groundwater level changes in an area of water resources operations, Pollack Periodica, Vol. 11, No. 3, 2016, pp. 8392.

    • Search Google Scholar
    • Export Citation
  • [10]

    Šlezingr M. , Marková J., Gernešová L. The effects of selected types of active bank stabilization. Procedia Engineering, Vol. 190, 2017. pp. 653659.

    • Search Google Scholar
    • Export Citation
  • [11]

    Haskoning R. Triwaco groundwater modeling software, TRIWACO User’s Manual, The Netherlands, 2004.

  • [12]

    Andrássy T. , Baroková D. Numerical modeling of groundwater flow close to drinking water resources during flood events, Pollack Periodica, Vol. 11, No. 1, 2016, pp. 4354.

    • Search Google Scholar
    • Export Citation
  • [13]

    Sandro R., Louati S. , Bendjoudi H., de Marsily G. Modeling of transient groundwater flow, pollutant transport, and biodegradation in an aquifer with large hydraulic head variations, Hydrogeology Journal, Vol. 22, No. 22, 2014, pp. 943956.

    • Search Google Scholar
    • Export Citation
  • [14]

    Fendeková M. , Fendek M. Groundwater drought in the Nitra river basin - identification and classification, Journal of Hydrology and Hydromechanics, Vol. 60, No. 3, 2012, pp. 185193.

    • Search Google Scholar
    • Export Citation
  • [15]

    Obergfell C. , Bakker M., Zaadnoordijk W. J., Maas K. Deriving hydrogeological parameters through time series analysis of groundwater head fluctuations around well fields, (in France) Hydrogeology Journal, Vol. 21, No. 5, 2013. pp. 987999.

    • Search Google Scholar
    • Export Citation
  • [16]

    Zaadnoordijk W. J. Simulating piecewise-linear surface water and ground water interactions with MODFLOW, Ground Water, Vol. 47, No. 5, 2009. pp. 723726.

    • Search Google Scholar
    • Export Citation
  • [17]

    Šoltész A. , Baroková D. Hydraulic design of groundwater drawdown, Phase 2 Report, Strategic Park Nitra, Bratislava, 2015.

  • [18]

    De Graaf E. M. , van Beek R. L. P. H., Gleeson T., Moosdorf N., Schmitz O., Sutanudjaja E. H., Bierkens M. F. P. M. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion, Advances in water Resources, Vol. 102, 2017, pp. 5367.

    • Search Google Scholar
    • Export Citation
  • [19]

    Mišík M. Calculation of mathematical hydrodynamic model with determination of discharge capacity of the Nitra River profile in section rkm 60.000-79.000 and capacities of detention volumes w.r.t flood wave transformation, Danish Hydraulic Institute (DHI), Bratislava Branch, 2016.

    • Search Google Scholar
    • Export Citation
  • [20]

    Julínek T. , Říha J. Assessing stream water quality influenced by storm overflows from sewers, Pollack Periodica, Vol. 12, No. 2, 2017, pp. 117128.

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.

 

MANUSCRIPT SUBMISSION

  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:

  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter


Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: ivanyi.peter@pmmik.pte.hu 

or ivanyi@pmmik.pte.hu