View More View Less
  • 1 University of Greenwich, Kent, ME4 4TB, United Kingdom
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

Functional failures and structural deterioration defects are among the leading causes of growing failure probabilities of the road systems and networks. Thus, asset maintenance intervention is an essential task for the unified management of road assets and systems. The objective of this research is to consider reliability based probabilistic approach established on functional failure mode, effects and criticality analysis parametric reliability analysis, risk-based assessment and strategic asset deterioration decisions. The combined progressive assessment frameworks and algorithms based procedures utilize service inspection, safety inspection and survey inputs. The illustrated reliability maintenance based methodologies offer sustainable asset management for highway transport infrastructure and systems with emphasis on resolutions to their functional failures, defect related risk and appropriate deterioration treatment.

  • [1]

    County Surveyors Society, Framework for highway asset management, City Surv Soc, London, The Stationary Office, 2004.

  • [2]

    UK Bridges Board, Management of highway structures, A code of practice, London, The Stationary Office, 2005.

  • [3]

    Frangopol D. M. , Mohamed S. Life-cycle of structural systems: Recent achievements and future directions, Structure and Infrastructure Engineering, Vol. 12, No. 1, 2016, pp. 120.

    • Search Google Scholar
    • Export Citation
  • [4]

    UK Roads Board, Well- maintained highways, Code of practice for highway maintenance management, London, The Stationary Office (TSO), 2005.

  • [5]

    Economic Development Research Group, Failure to act, The impact of current infrastructure investment on America’s economic future, Virginia, 2013.

  • [6]

    Department for Transport, Highways Agency, 2010 to 2015 government policy, road network and traffic, 2015, government-policy-road-network-and-traffic (last visited 25 July 2015).

  • [7]

    Ekpiwhre E. O. , Tee K. F. Reliability-centered maintenance of road junction transport assets, In: Kruis J, Tsompanakis Y, Topping B. H. V. (Eds) Proc. of Fifteenth Int. Conf. Civil, Struct. Environ. Eng. Comput. Prague, Czech Republic, 1-4 September 2015, Civil- Comp Press, 2015, Paper 279.

    • Search Google Scholar
    • Export Citation
  • [8]

    Mariut L. , Helerea E., Felea I. Underground power cables-life analysis and reliability prognosis, Pollack Periodica, Vol. 7, No. 3, 2012, pp. 314.

    • Search Google Scholar
    • Export Citation
  • [9]

    Ekpiwhre E. O. , Tee K. F. Reliability based maintenance for sustainable transport asset management, In: Iványi P., Bachmann B. Kvasznicza Z. (Eds.) 12th Miklós Iványi Int. PhD DLA Symp, Pollack Press, Pécs, Hungary, 3-4 November 2016, p. 38.

    • Search Google Scholar
    • Export Citation
  • [10]

    Ekpiwhre E. O. , Tee K. F., Aghagba S., Bishop K. Risk-based inspection on highway assets with category 2 defects, Int J Safety Security Eng, Vol. 6, No. 2, 2016, pp. 372382.

    • Search Google Scholar
    • Export Citation
  • [11]

    Washer G. , Connor R., Nasrollahi M., Reising R. Verification of the framework for riskbased bridge inspection, Journal of Bridge Engineering, Vol. 21, No. 4, 2016, paper 04015078.

    • Search Google Scholar
    • Export Citation
  • [12]

    Ekpiwhre E. O. , Tee K. F., Mordi O., Bull T. Carriageway deterioration prognosis modelling using Markovian chain, In: Scarf P., Wu S., Do P. (Eds) Proc.of 9th IMA Int. Conf. Model. Ind. Maint. Reliab, London, UK, 12-14 July 2016, pp. 5863.

    • Search Google Scholar
    • Export Citation
  • [13]

    Wellalage N. K. W. , Zhang T., Dwight R. Calibrating Markov chain–based deterioration models for predicting future conditions of railway bridge elements, Journal of Bridge Engineering, Vol. 20, No. 2, 2015, paper 04014060.

    • Search Google Scholar
    • Export Citation
  • [14]

    Ekpiwhre E. O. , Tee K. F. Cost modelling of carriageway treatment transition for strategic maintenance optimisation, In: Institute of Asset Management, Institute of Engineering & Technology, (Ed.) Profs. of Asset Manag. Conf, London, UK, 23-24 November 2016, paper 7.a.2.

    • Search Google Scholar
    • Export Citation
  • [15]

    Kota L. , Jarmai K. Efficient algorithms for optimization of objects and systems, Pollack Periodica, Vol. 9, No. 1, 2014, pp. 121132.

    • Search Google Scholar
    • Export Citation
  • [16]

    Khan L. R. , Tee K. F. Risk-cost optimization of buried pipelines using subset simulation, Journal of Infrastructure Systems, ASCE, Vol. 22, No. 2, 2016, 04016001.

    • Search Google Scholar
    • Export Citation
  • [17]

    Orugbo E. E , Alkali B., DeSilva A., Harrison D. K. RCM and AHP hybrid model for road network maintenance prioritization, Baltic Journal of Road & Bridge Engineering, Vol. 10, No. 2, 2015, pp. 182190.

    • Search Google Scholar
    • Export Citation
  • [18]

    US Navy Sea Systems, Reliability-centered maintenance (RCM) handbook, vol. S9081– AB–G. U.S Navy Sea Systems Command, 2007.

  • [19]

    Ascher H , Feingold H. Repairable systems reliability, modeling, inference, misconceptions and their causes, NY, M Dekker 1984.

  • [20]

    Crow L. H. Reliability analysis for complex, repairable systems, technical report No. 10, US Army Materials Alaysis Activity, 1975.

  • [21]

    Duane J. T. Learning curve approach to reliability monitoring, IEEE Trans Aerosp, Vol. 2, No. 2, 1964, pp. 563566.

  • [22]

    Transport for London good practice guide, Risk based inspection for highway structures, Attkins, London, 2011.

  • [23]

    Fang Y. , Xiong J., Tee K. F. Time-variant structural fuzzy reliability analysis under stochastic loads applied several times, Structural Engineering and Mechanics, Vol. 55, No. 3, 2015, pp. 525534.

    • Search Google Scholar
    • Export Citation
  • [24]

    Khemis A. , Hacene-Chaouche A., Athmani A., Tee K. F. Uncertainty effects of soil and structural properties on the buckling of flexible pipes shallowly buried in Winkler foundation, Structural Engineering and Mechanics, Vol. 59, No. 4, 2016, pp. 739759.

    • Search Google Scholar
    • Export Citation
  • [25]

    Zhang Y. , Kim C. W., Tee K. F. Maintenance management of offshore structures using Markov process model with random transition probabilities, Structure and Infrastructure Engineering, Vol. 13, No. 8, 2017, pp. 10681080.

    • Search Google Scholar
    • Export Citation
  • [26]

    Fang Y. , Tao W., Tee K. F. Time-domain multi-state markov model for engine system reliability analysis, Mechanical Engineering Journal, Vol. 3, No. 3, 2016, paper 16-00084.

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.



  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:



Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650