View More View Less
  • 1 Széchenyi István University, Egyetem tér 1, H-9026 Győr, Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

A comprehensive analysis of the finite element method based lamination modeling has been performed and the results are presented in this paper. The simulations are made in two subsequent steps. In the first step, the approximate magnetic field distribution inside the material with linear characteristics is determined assuming a bulk material having anisotropic conductivity and laminates are not taken into account. In the second step, the eddy current field inside the individual laminates is modeled. The boundary conditions of any individual sheets are obtained from the bulk model. The paper presents the advantages and the drawbacks of the applicable potential formulations. Results are compared with the quasi-static electromagnetic field obtained from a reference solution taking account of each laminate.

  • [1]

    Handgruber P. Advanced eddy current and hysteresis loss models for steel laminations of rotating electrical machines, PhD Theses, University of Technology of Graz, Graz, 2015.

    • Search Google Scholar
    • Export Citation
  • [2]

    Hollaus K. Numerical simulation of eddy currents and the associated losses in laminated ferromagnetic materials by the method of finite elements, PhD Theses, University of Technology of Graz, Graz, 2001.

    • Search Google Scholar
    • Export Citation
  • [3]

    Silva V. C. , Meunier G., Foggia A. A 3-D finite element computation of eddy currents and losses in laminated iron cores allowing for electric and magnetic anisotropy, IEEE Trans. Magn. Vol. 31, 1995, pp. 21392141.

    • Search Google Scholar
    • Export Citation
  • [4]

    Sebestyén I. , Gyimóthy Sz., Pávó J., Bíró O. Calculation of losses in laminated ferromagnetic materials, IEEE Trans. Magn. Vol. 40, 2004, pp. 924927.

    • Search Google Scholar
    • Export Citation
  • [5]

    Bíró O. , Preis K., Ticar I. A FEM method for eddy current analysis in laminated media, Proc. of the 11th International Symposium on Electromagnetic Fields in Electrical Engineering, Maribor, Slovenia, 18–20 September, 2003, pp. 914.

    • Search Google Scholar
    • Export Citation
  • [6]

    Bíró O. , Preis K., Ticar I. A FEM method for eddy current analysis in laminated media, COMPEL, Vol. 24, No. 1, 2006, pp. 241248.

  • [7]

    Jack A. G. , Mecrow B. C. Calculation of three-dimensional electromagnetic fields involving laminar eddy currents, IEE Proceedings, Vol. 134 Pt. A, 1987, pp. 663671.

    • Search Google Scholar
    • Export Citation
  • [8]

    Emad D. Magnetodynamic vector hysteresis models for steel laminations of rotating electrical machines, PhD Theses, Helsinki University of Technology, Helsinki, 2008.

    • Search Google Scholar
    • Export Citation
  • [9]

    Kuczmann M. Nodal and vector finite elements in static and eddy current field problems, Pollack Periodica, Vol. 3, No. 2, 2008, pp. 8596.

    • Search Google Scholar
    • Export Citation
  • [10]

    Kuczmann M. , Iványi A. The finite element method in magnetics, Budapest, Academic Press, 2008.

  • [11]

    Bíró O. , Richter K. R. CAD in electromagnetism, Advances in Electronics and Electron Physics, Vol. 82, 1991, pp. 196.

  • [12]

    Albertz D. , Henneberger G. Calculation of 3D eddy current fields using both electric and magnetic vector potential in conducting region, IEEE Trans. Magn. Vol. 34, No. 5, 1998, pp. 26442647.

    • Search Google Scholar
    • Export Citation
  • [13]

    Benes S. , Kruis J. Approximation methods for post-processing of large data from the finite element analysis, Pollack Periodica, Vol. 11, No. 3, 2016, pp. 165176.

    • Search Google Scholar
    • Export Citation
  • [14]

    www.comsol.com, (last visited 15 October 2017).

  • [15]

    Kapeller H. , Dvorak D., Gragger V. J., Müllner F., Neudorfer H. Modeling of iron losses in an induction machine based on magnetic equivalent circuit in Modelica, Proceedings of the 2017 IEEE International Electric Machines and Drives Conference, 21-24 May 2017, Miami FL, USA, pp. 18.

    • Search Google Scholar
    • Export Citation
  • [16]

    Lehikonien A. , Ikaheimo J., Arkkio A., Belahcen A. Domain decomposition approach for efficient time-domain finite-element computation of winding losses in electrical machines, IEEE Trans. Magn. Vol. 53, No. 5, 2017, Paper No. 7400609.

    • Search Google Scholar
    • Export Citation
  • [17]

    Dems M. , Komeza K. The influence of electrical sheet on the core losses at no-load and full-load of small power induction motors, IEEE Trans. Ind. El. Vol. 64, No. 3, 2017, pp. 24332442

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.

 

MANUSCRIPT SUBMISSION

  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:

  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter


Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: ivanyi.peter@pmmik.pte.hu 

or ivanyi@pmmik.pte.hu