The numerical examination of nonlinear oscillators is presented in this paper. First some methods of nonlinear system modeling are described then the numerical creation of phaseplane, bifurcation diagrams and Poincaré sections are expounded in detail. The next part of the paper is the numerical examination of nonlinear oscillators, like the Duffing-Holmes oscillator and a mechatronic semi-active suspension system. The paper concludes with further development tasks.
Fülep D. , Zsoldos I., Lászó I. Self-organised formation of nanotubes from graphene ribbons: A molecular dynamics study, Materials Research Express, Vol. 3, No. 10, 2016, paper 5044.
Zhang K. , Wu Y. S., Bodvarsson G.S. Parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada, Journal of Contaminant Hydrology, Vol. 62–63, 2003, pp. 381–399.
Krejci T. , Kruis J., Koudelka T. Sejnoha M. Processor farming in two-level analysis of historical bridge, Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, Pécs, Hungary, 30-31 May 2017, Civil-Comp Press, Stirlingshire, UK, 2017, Paper 12.
Strofylas G. A. , Porfyri K. N., Nikolos I. K., Delis A. I., Papageorgiou M. Calibrating a traffic flow model with parallel differential evolution, Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, Pécs, Hungary, 30-31 May 2017, Civil-Comp Press, Stirlingshire, UK, Paper 26.
Takács D. , Stépán G. Contact patch memory of tyres leading to lateral vibrations of fourwheeled vehicles, Philosophical Transactions of the Royal Society A, Mathematical Physical and Engineering Sciences, Vol. 371, No. 1993, 2013, Paper 20120427, p. 12.
Pidl R. Consideration on road transport vibration simulation techniques for packaging testing purposes, Acta Technica Jaurinensis, Vol 10. No. 2, 2017, pp. 137–147.
Stépán G. Delay-differential equation models for machine tool chatter, Dynamics and Chaos in Manufacturing Processes, Vol. 471152935, 1998, pp. 165-192.
Schiffer A , Ivanyi A. Vibration of transformer sheets using non-linear characteristics, Journal of Physics, Conference Series, Vol. 268:, 2011, paper 012027.
Peluffo-Ordonez D. H. , Rodríguez-Sotelo J. L., Revelo-Fuelagán E. J., Ospina-Aguirre C., Olivard-Tost G. Generalized Bonhoeffer-van der Pol oscillator for modeling cardiac pulse: Preliminary results, 2015 IEEE 2nd Colombian Conference on Automatic Control, Manizales, Colombia, 14-16 October 2015, DOI: 10.1109/CCAC.2015.7345211
Facchinetti M. L. , Langre E., Biolley F. Vortex shedding modeling using diffusive van der Pol oscillators, Comptes Rendus Mécanique, Vol. 330, No 7, 2002, pp. 451–456.
Dumitrescu I. , Bachir S., Cordeau D., Paillot J. M., Iordache M. Modeling and characterization of oscillator circuits by Van Der Pol model using parameter estimation, Journal of Circuits, Systems, and Computers, Vol. 21. No. 5. 2012, paper 1250043.
Chian A. C. L. Complex systems approach to economic dynamics, Springer-Verlag, Berlin Heidelberg, 2007.
Wang L. Reliable design of tunnel diode and resonant tunnelling diode based microwave sources, PhD Thesis, University of Glasgow, 2012.
Garay B. Nonlinear dynamical systems (in Hungarian), Pázmány Péter Catholic University, 2013, http://www.tankonyvtar.hu/en/tartalom/tamop412A/2011-0052_20_nemlinearis_dinamikus_rendszerek/index.html (last visited 12 November 2017).
Bayat M. , Pakar I. On the approximate analytical solution to non-linear oscillation systems, Shock and Vibration, Vol. 20, No. 1, 2013, pp. 4–52.
Abdelhafez H. M. Solution of excited non-linear oscillators under damping effects using the modified differential transform method, Mathematics, Vol. 4, No. 1. 2016, p. 12.
Maróti Gy. Investigating parameterized model of n-gonal wheel’s motion, Pollack Periodica, Vol. 6, No. 2, 2011, pp. 4–36.
Maróti Gy. Finding closed-form solutions of beam vibration, Pollack Periodica, Vol. 6, No. 1, 2011, pp. 4–154.
Lynch S. Dynamical systems with applications using maple, Birkhäuser Boston, 2010.
Perjési-Hámori I. Two dimensional mathematical model of heat-transmission using MAPLE, IFAC-PapersOnLine, Vol. 48, No. 1, 2015 pp. 689–690.
Hajdu F. Numerical examination of a nonlinear circuit element (in Hungarian), Proceedings of the 5th Interdisciplinary Doctoral Conference Conference, Pécs, Hungary, 27-29 May 2016, pp. 142–154.
Hajdu F. , Molnárka Gy. Parallelization of numerical examination of nonlinear systems using Maple, Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, Pécs, Hungary, 30-31 May 2017, Civil-Comp Press, Stirlingshire, UK, Paper 30.
Aguierre L. A. A tutorial introduction to nonlinear dynamics and chaos, Part 1, Tools and benchmarks, SBA Controle & Automacao, Vol. 7, No. 1, 1996, pp. 4–49.
Kuznetsov Y. A. Elements of applied bifurcation theory, Springer, 1998.
Garay B. M. , Indig B. Chaos in Vallis’ asymmetric Lorenz model for El Niño, Chaos, Solitons & Fractals, Vol. 75, 2015, pp. 3–262.
Hajdu F. , Molnárka Gy. Numerical examination of a system model with a nonlinear component, Proceedings of the 8th International Scientific and Expert Conference, Trnava, Slovakia, 19-21 October 2016, pp. 12–16.
Billings S. A. , Boaghe O. M. The response spectrum map, a frequency domain equivalent to the bifurcation diagram, International Journal of Bifurcation and Chaos, Vol. 11, No. 7, 2001, pp. 4–1975.
Kuczmann M. Fourier transform and controlling of flux in scalar hysteresis measurement, Physica B: Condensed Matter, Vol. 403 No.2-3, 2008 pp. 410–413.
Maple soft: new features in Maple 17, Signal processing, https://www.maplesoft.com/products/maple/new_features/maple17/signal_processing.aspx, (last visited 1 October 2017).
Sári Z. Investigation of multi-valued, hysteresis-type nonlinearities in numerical field problems, PhD Thesis, Budapest University of Technology and Economics, 2012.
Sykora H. T. , Wedig W. V., Bachrathy D., Stépán G. Approximation of top Lyapunov exponent of stochastic delayed turning model using Fokker-Planck approach, Proceedings of the 9th European Nonlinear Dynamics Conference, Budapest, Hungary, 25-30 June 2017, Paper 429
Liu K. , Wang H., Xiao J., Taha Z. Analysis of human standing balance by largest Lyapunov exponent, Computational Intelligence and Neuroscience, 2015, Paper 158478.
Ivancevic V. G. , Ivancevic T. High-dimensional chaotic and attractor systems, Springer Netherlands, 2007.
Égert J. , Jezsó K. Mechanics-vibrations (in Hungarian), Széchenyi István University, Győr, Hungary, 2006.
Takashi K. Duffing oscillator, Scholarpedia, http://www.scholarpedia.org/article/Duffing_oscillator (last visited: 26.03.2018).
Tam J. I. , Holmes P. Revisiting a magneto-elastic strange attractor, Journal of Sound and Vibration, Vol. 333, No. 6, 2014, pp. 4–1780.
Mojrzisch S. , Wallaschek J., Bremer J. An experimental method for the phase controlled frequency response measurement of nonlinear vibration systems, Proceedings in Applied Mathematics and Mechanics, Vol. 12, No. 1, 2012, pp. 4–254.
Donoso G. , Ladera C. L. Nonlinear dynamics of a magnetically driven Duffing-type spring–magnet oscillator in the static magnetic field of a coil, European Journal of Physics, Vol. 33, No. 6, 2012, pp. 4–1486.
Cottone F. , Basset P., Vocca H., Gammaitoni L. Electromagnetic buckled beam oscillator for enhanced vibration energy harvesting, IEEE International Conference on Green Computing and Communications, Besancon, France, 20-23 November 2012, doi: 10.1109/GreenCom.2012.151.
Litak G. , Borowiec M., Friswell M. I., Szabelski K. Chaotic vibration of a quarter-car model excited by the road surface profile, Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 7, 2008, pp. 4–1383.
Barbosa R. S. Vehicle dynamic response due to pavement roughness, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 33, No. 3, 2011, doi: 10.1590/S1678-58782011000300005
Fakhraei J. , Khanlo H. M., Ghayour M. Chaotic behaviors of a ground vehicle oscillating system with passengers, Scientia Iranica, Vol. 24, No. 3, 2017, pp. 4–1068.