View More View Less
  • 1,2 Masaryk University, Kotlářská 2 611 37 Brno, Czech Republic
  • 1 T. G. Masaryk Water Research Institute, Brno Branch, Mojmírovo náměstí 16 612 00 Brno, Czech Republic
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

Abstract

The soil conservation service - curve number method is a globally used approach to simulations of surface runoff for its simplicity and applicability. Nevertheless, relevant simulations require proper setting of the model's components. This work focuses on optimization of initial abstraction ratio λ in the Husí potok sub-catchments in Czech Republic. Due to favorable morphology, the watershed is prone to flash floods and accurate modeling of surface runoff is of high interest. The analysis was conducted using pairs of discharge and rainfall measurements. The results outline that the traditional value λ= 0.2 is too high in this watershed and should be reduced.

  • [1]

    Archer D. R. , Fowler H. J. Characterizing flash flood response to intense rainfall and impacts using historical information and gauged data in Britain, Journal of Flood Risk Management, Vol. 11, No. S1, 2018, pp. S121S133.

    • Search Google Scholar
    • Export Citation
  • [2]

    Janík, A., Šoltész, A. Flash flood mitigation modeling - case study small Carpathians, Pollack Periodica, Vol. 12, No. 2, 2017, pp. 103116.

    • Search Google Scholar
    • Export Citation
  • [3]

    SCS, in Hydrology, National Engineering Handbook, Soil Conservation Service, Supplement A, Section 4, Chapter 10. USDA, Washington D.C, 1956.

    • Search Google Scholar
    • Export Citation
  • [4]

    Knisel W. G. CREAMS: a field-scale model for chemical runoff and erosion from agricultural management systems, USDA Conservation Research Report, No. 26, USDA, Washington D.C, 1980.

    • Search Google Scholar
    • Export Citation
  • [5]

    Williams J. R. , Arnold, J. G., Srinivasan R. The APEX model, Blackland Research Center Report, No. 00-06, Texas Agricultural Experiment Station, Temple, Tx, USA, 2000.

    • Search Google Scholar
    • Export Citation
  • [6]

    Arnold J. G. , Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, D., Van Griensven, A., Van Liew M. W. Kannan N., Jha M. K. SWAT: Model use, caliubration and validation, Transation of the ASABE, Vol. 55, No. 4, 2012, pp. 14911508.

    • Search Google Scholar
    • Export Citation
  • [7]

    Ajmal M. , Waseem, M., Wi, S., Kim T. W. Evolution of a parsimonious rainfall-runoff model using soil moisture proxies, Journal of Hydrology, Vol. 530, 2015, pp. 623633.

    • Search Google Scholar
    • Export Citation
  • [8]

    Mishra S. K. , Sahu, R. K., Eldho, T. I., Jain M. K.. An improved Ia-S relation incorporating antecedent moisture in SCS-CN methodology, Water Resources Management, Vol. 20, No. 5, 2006, pp. 643660.

    • Search Google Scholar
    • Export Citation
  • [9]

    Labat M. M. , Korbelova, L., Kohnova, S., Hlavcova K. Design of measures for soil erosion control and assessment of their effect on the reduction of peak flows, Pollack Periodica, Vol. 13, No. 3, 2018, pp. 209219.

    • Search Google Scholar
    • Export Citation
  • [10]

    Mishra S. K. , Sansalone, J. J., Singh V. P. Partitioning analog for metal elements in urban rainfall-runoff overland flow using the soil conservation service curve number concept, Journal of Environmental Engineering, Vol. 130, No. 2, 2004, pp. 145154.

    • Search Google Scholar
    • Export Citation
  • [11]

    Ojha C. S. P. Simulating turbidity removal at a river bank filtration site in India using SCS-CN approach, Journal of Hydrologic Engineering, Vol. 17, No. 11, 2012, pp. 12401244.

    • Search Google Scholar
    • Export Citation
  • [12]

    Park Y. S , Engel B. A., Harbor J. A Web-based model to estimate the impact of best management practices, Water, Vol. 6, No. 3, 2014, pp. 455471.

    • Search Google Scholar
    • Export Citation
  • [13]

    Kaffas K. , Hrissanthou V. Estimate of continuous sediment graphs in a basin, using a composite mathematical model, Environmental Processes, Vol. 2, No. 2, 2015, pp. 361378.

    • Search Google Scholar
    • Export Citation
  • [14]

    Bulcock L. M. , Jewitt, G. P. W. Key physical characteristics used to assess water harvesting suitability, Physics and Chemistry of the Earth, Parts A/B/C, Vol. 66, 2013, pp. 89100.

    • Search Google Scholar
    • Export Citation
  • [15]

    Singh P. K. , Yaduvanshi, B. K., Patel, S., Ray S. SCS-CN based quantification of potential of rooftop catchments and computation of ASRC for rainwater harvesting, Water Resources Management, Vol. 27, No. 7, 2013, pp. 20012012.

    • Search Google Scholar
    • Export Citation
  • [16]

    Napoli M. , Cecchi, S., Orlandini, S., Zanchi C. A. Determining potential rainwater harvesting sites using a continuous runoff potential accounting procedure and GIS techniques in central Italy, Agricultural Water Management, Vol. 141, 2014, pp. 5565.

    • Search Google Scholar
    • Export Citation
  • [17]

    Hawkins R. H. The importance of accurate curve numbers in the estimation of storm runoff, Water Resources Boulletin, Vol. 11, No. 5, 1975, pp. 887891.

    • Search Google Scholar
    • Export Citation
  • [18]

    Chen C. L. Infiltration formulas by curve number procedure, Journal of Hydraulics Division, Vol. 108, No. HY7, 1982, pp. 823829.

  • [19]

    Ponce V. M. , Hawkins R. H. Runoff curve number: Has it reached maturity? Journal of Hydrologic Engineering, Vol. 1, No. 1, 1996, pp. 1119.

    • Search Google Scholar
    • Export Citation
  • [20]

    Baltas E. A. , Dervos, N. A., Mimikou M. A. Technical Note: Determination of the SCS initial abstraction ratio in an experimental watershed in Greece, Hydrology and Earth System Sciences, Vol. 11, No. 6, 2007, pp. 18251829.

    • Search Google Scholar
    • Export Citation
  • [21]

    Sahu R. K. , Mishra, S. K., Ejdho T. I. An improved AMC-coupled runoff curve number model, Hydrological Processes, Vol. 24, No. 20, 2010, pp. 28342839.

    • Search Google Scholar
    • Export Citation
  • [22]

    Babu P. S. , Mishra S. K. Improved SCS-CN-inspired model, Journal of Hydrologic Engineering, Vol. 17, No. 11, 2012, pp. 11641172.

  • [23]

    Jiao P. , Xu, D., Wang, S., Yu, Y., Han S. Improved SCS-CN method based on storage and depletion of antecedent daily precipitation, Water Resources Management, Vol. 29, No. 13, 2015, pp. 47534765.

    • Search Google Scholar
    • Export Citation
  • [24]

    Shi W. , Huang, M., Gongadze K. A modified SCS-CN method incorporating storm duration and antecedent soil moisture estimation for runoff prediction, Water Resources Management, Vol. 31, No. 5, 2017, pp. 17131727.

    • Search Google Scholar
    • Export Citation
  • [25]

    Shi Z. H. , Chen, L. D., Fang, N. F., Qin, D. F., Cai C. F. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China, Catena, Vol. 77, No. 1, 2009, pp. 17.

    • Search Google Scholar
    • Export Citation
  • [26]

    Jain M. K. , Mishra, S. K., Babu, P. S., Venugopal K. On the Ia-S relation of the SCS-CN method, Hydrology Research, Vol. 37, No. 3, 2006, pp. 261275.

    • Search Google Scholar
    • Export Citation
  • [27]

    Assessment of floods in June and July 2009 in the Czech Republic, (in Czech) Czech Hydrometeorological Institute, http://voda.chmi.cz/pov09/doc/01.pdf, (last visited 29 December 2018).

    • Search Google Scholar
    • Export Citation
  • [28]

    Assessment of flood in May and June 2010 in the Czech Republic (in Czech), Czech Hydrometeorological Institute, http://voda.chmi.cz/pov10/index.html, (last visited 29 December 2018).

    • Search Google Scholar
    • Export Citation
  • [29]

    Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall, Journal of Hydrology, Vol. 228, No. 1-2, 2000, pp. 113129.

    • Search Google Scholar
    • Export Citation
  • [30]

    Yang K. , Cao, S., Liu X. Flow resistance and its prediction methods in compound channels, Acta Mechanica Sinica, Vol. 23, No. 1, 2007, pp. 2331.

    • Search Google Scholar
    • Export Citation
  • [31]

    Eckhardt K. How to construct recursive digital filters for baseflow separation, Hydrological Processes, Vol. 19, No. 2, 2005, pp. 507515.

    • Search Google Scholar
    • Export Citation
  • [32]

    Hawkins R. H. Improved prediction of storm runoff in mountain watersheds, Journal of the Irrigation and Drainage Division, Vol. 99, No. 4, 1973, pp. 519523.

    • Search Google Scholar
    • Export Citation
  • [33]

    Nash J. E. Sutcliffe J. V. River flow forecasting through conceptual model, Ppart I, A discussion of principles, Journal of Hydrology, Vol. 10, No. 3, 1970, pp. 282290.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 12 12
Jul 2020 23 5 4
Aug 2020 40 0 0
Sep 2020 13 10 20
Oct 2020 37 10 20
Nov 2020 37 7 14
Dec 2020 0 0 0