View More View Less
  • 1,3 Technical University of Dresden, Dresden, Germany
  • 2,4 Lviv Branch of Dnipropetrovsk National University of Railway Transport, Lviv, Ukraine
  • 5 Lviv Polytechnic National University, Lviv, Ukraine
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00


Railway ballast tamping is one of the cost-expensive renewal and maintenance works of railway superstructure. The quality of ballast consolidation influences its resistance to residual deformations and long-term deterioration of track geometry. The process of ballast compaction along the sleeper under the vibration loading is complex and depends on many factors. The ballast flow processes under the vibration loading can produce both consolidation and un-consolidation of ballast material. The present study is devoted to the experimental investigation of ballast consolidation inhomogeneity. The method of ballast local consolidation measurement is proposed. The method is based on the velocity of impact wave propagation that is measured with device. The application of modern microcontroller and sensor techniques provided simple and reliable multi-point velocity measurements in a ballast layer. That enables well enough spatial resolution of ballast consolidation inhomogeneity. The measurement analysis has shown more than 4 times higher consolidation under the sleeper center than for unconsolidated ballast.

  • [1]

    Lichtberger B. Track compendium: formation, permanent way, maintenance, economics, Hamburg, Eurailpress, 2005.

  • [2]

    Gerber U. Design of railway superstructure, (in German) in Fendrich, L., Fengler W., (Eds), Handbuch Eisenbahninfrastruktur, Springer, Vol. 2, 2013, pp. 3964.

    • Search Google Scholar
    • Export Citation
  • [3]

    Esveld C. Modern railway track (Vol. 385). Zaltbommel, The Netherlands, MRT-productions, 2001.

  • [4]

    Izvolt L. , Harusinec, J., Smalo M. Optimization of transition areas between ballast-less track and ballasted track in the area of the tunnel turecky vrch, Communications, Scientific Letters of the University of Zilina, Vol. 20, No. 3, 2018, pp. 6776.

    • Search Google Scholar
    • Export Citation
  • [5]

    Kovalchuk V. , Kovalchuk, Y., Sysyn, M., Stankevych, V., Petrenko O. Estimation of carrying capacity of metallic corrugated structures of the type multiplate mp 150 during interaction with backfill soil, Eastern-European Journal of Enterprise Technologies, Vol. 1, No. 1, (Vol. 91), 2018, pp. 1826.

    • Search Google Scholar
    • Export Citation
  • [6]

    Fischer S. Breakage test of railway ballast materials with new laboratory method, Periodica Polytechnica, Civil Engineering, Vol. 61, No. 4, 2017, pp. 794802.

    • Search Google Scholar
    • Export Citation
  • [7]

    Plášek O. , Hruzíková M., Svoboda R., Vendel J. Influence of under sleeper pads on track quality, Akustika, Vol. 23, No. 1, 2015, pp. 2833.

    • Search Google Scholar
    • Export Citation
  • [8]

    Fischer S. , Juhász E. Railroad ballast particle breakage with unique laboratory test method, Acta Technica Jaurinensis, Architecture and Civil Engineering, Vol. 12, No. 1, 2019, pp. 2654.

    • Search Google Scholar
    • Export Citation
  • [9]

    Gerber U. , Fengler W. Settlement behaviour of ballast layer, (Setzungsverhalten des Schotters, in German) Eisenbahntechnische Rundschau, Vol. 4, 2010, pp. 170175.

    • Search Google Scholar
    • Export Citation
  • [10]

    Sysyn M. , Gerber, U., Kovalchuk, V., Nabochenko O. The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works, Archives of Transport, Vol. 46, No. 3, 2018, pp. 91107.

    • Search Google Scholar
    • Export Citation
  • [11]

    Holtzendorff K. Investigation of the settlement behaviour of railway ballast and the void forming on railway tracks, (Untersuchung des Setzungsverhaltens von Bahnschotter und der Hohllagenentwicklung auf Schotterfahrbahnen, in German) PhD Thesis, Technische Universität Berlin, 2003.

    • Search Google Scholar
    • Export Citation
  • [12]

    Guo Y. , Markine, V., Zhang, X., Qiang, W., Jing G. Image analysis for morphology, rheology and degradation study of railway ballast: A review, Transportation Geotechnics, Vol. 18, 2018, pp. 173211.

    • Search Google Scholar
    • Export Citation
  • [13]

    Wang B. , Martin, U., Rapp S. Vibration characteristic analysis of ballast with different aspect ratios by means of the discrete element method, Fourth Geo-China International Conference, Shandong, China, 25-27 July 2016, pp. 1623.

    • Search Google Scholar
    • Export Citation
  • [14]

    Németh, A., Fischer S. Investigation of glued insulated rail joints with special fiber-glass reinforced synthetic fishplates using in continuously welded tracks, Pollack Periodica, Vol. 13, No. 2, 2018, pp. 7786.

    • Search Google Scholar
    • Export Citation
  • [15]

    Nagy R. Description of rail track geometry deterioration process in hungarian rail lines no. 1 and no. 140, Pollack Periodica, Vol. 12, No. 3, 2017, pp. 141156.

    • Search Google Scholar
    • Export Citation
  • [16]

    Kumara J. J. , Hayano K. Deformation characteristics of fresh and fouled ballasts subjected to tamping maintenance, Soils and Foundations, Vol. 56, No. 4, 2016, pp. 652663.

    • Search Google Scholar
    • Export Citation
  • [17]

    Ferellec J. F. , Perales, R., Nhu, V. H., Wone, M., Saussine G. Analysis of compaction of railway ballast by different maintenance methods using DEM, EPJ Web of Conferences, Vol. 140, 2018, paper No. 15032, pages 4.

    • Search Google Scholar
    • Export Citation
  • [18]

    Nabochenko O. , Sysyn, M., Kovalchuk, V., Kovalchuk Yu., Pentsak A., Braichenko S. Studying the railroad track geometry deterioration as a result of an uneven subsidence of the ballast layer, Eastern-European Journal of Enterprise Technologies, Vol. 1, No. 7 (97), 2019, pp. 5059.

    • Search Google Scholar
    • Export Citation
  • [19]

    Sysyn M. , Gerber, U., Gruen, D., Nabochenko, O., Kovalchuk V. Modeling and vehicle based measurements of ballast settlements under the common crossing, European Transport, Vol. 71, 2019, pp. 119.

    • Search Google Scholar
    • Export Citation
  • [20]

    Bold R. D. Non-destructive evaluation of railway tracked ballast, PhD Thesis, Institute for Infrastructure and Environment, School of Engineering, University of Edinburgh, 2011.

    • Search Google Scholar
    • Export Citation
  • [21]

    Park C. B. , Miller, R. D., Ryden N. Roadside seismic survey utilizing traffic noise, Proceeding of the NDE (Non-Destructive Engineering) Conference on Civil Engineering, St. Louis, MO, USA, 14-18 August 2006, pp. 323334.

    • Search Google Scholar
    • Export Citation
  • [22]

    Sussmann T. R. , Thompson, H. B., Stark, T. D., Wilk, S. T., Ho C. L. Use of seismic surface wave testing to assess track substructure condition, Construction and Building Materials, Vol. 155, 2017, pp. 12501255.

    • Search Google Scholar
    • Export Citation
  • [23]

    Zhang Q. , Gascoyne, J., Eriksen A. Characterisation of ballast materials in trackbed using ground penetrating radar, Part 1, 5th IET Conference on Railway Condition Monitoring and Non-Destructive Testing, Derby, UK, 2930 November 2011, page 4.a.1.

    • Search Google Scholar
    • Export Citation
  • [24]

    Sysyn M. , Gruen, D., Gerber, U., Nabochenko, O., Kovalchuk V. Turnout monitoring with vehicle based inertial measurements of operational trains: a machine learning approach, Communications - Scientific Letters of the University of Zilina, Vol. 21, No. 1, 2019, pp. 4248.

    • Search Google Scholar
    • Export Citation
  • [25]

    Sysyn M. , Nabochenko, O., Gerber, U., Kovalchuk V. Evaluation of railway ballast layer consolidation after maintenance works, Acta Polytechnica, Vol. 58, No. 6, 2019, pp. 116.

    • Search Google Scholar
    • Export Citation
  • [26]

    Zhao D. Multiscale seismic tomography, Springer, 2015.

  • [27]

    Dahm T. Basics of geophysics, (Grundlagen der Geophysik, in German) - Lecture Notes, Potsdam: Deutsches GeoForschungsZentrum 2015.

  • [28]

    Marx L. , Moßmann D. Working method for the maintenance of the superstructure, (Arbeitsverfahren für die Instandhaltung des Oberbaus, in German) Bahn Fachverlag Auflage, 7th Ed, 2011.

    • Search Google Scholar
    • Export Citation

The author instructions template is available in MS Word.
Please, download the file from HERE.



  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:



Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650