Authors:
Abbas Al-Hdabi Department of Civil Engineering, Faculty of Engineering, University of Kufa, Iraq

Search for other papers by Abbas Al-Hdabi in
Current site
Google Scholar
PubMed
Close
,
Mohammed K. Fakhraldin Department of Civil Engineering, Faculty of Engineering, University of Kufa, Iraq

Search for other papers by Mohammed K. Fakhraldin in
Current site
Google Scholar
PubMed
Close
,
Rasha A. Al-Fatlawy Department of Civil Engineering, Faculty of Engineering, University of Kufa, Iraq

Search for other papers by Rasha A. Al-Fatlawy in
Current site
Google Scholar
PubMed
Close
, and
Tawfek Sheer Ali Structures and Water Resources Department, Faculty of Engineering, University of Kufa Iraq

Search for other papers by Tawfek Sheer Ali in
Current site
Google Scholar
PubMed
Close
Restricted access

Ignition of waste paper sludge at elevated temperatures to produce electricity in power generation plants utilizing fluidized bed combustion generates paper sludge ash. Due to the high concentration of lime and gelignite in paper sludge ash, it is expected that it will play a vital role as a cementitious material. This paper investigates the use of paper sludge ash to improve the mechanical properties of the granular materials, which are suitable to subbase course for road and building constructions. Also, a comparison study with the use of Portland cement as an additive to granular materials has been covered. The mechanical properties were evaluated by conducting the California bearing ratio test for the two adopted methods. Moreover, the compressive strength of the samples using paper sludge ash and cement are investigated. In accordance to the California bearing ratio test, 4% paper sludge ash was indicated as the optimum ash content at which the California bearing ratio value increased by 173% and 111% in comparison with untreated material and 6% cement, respectively. On the other hand, and by means of the compressive strength, the granular materials with 4% paper sludge ash has compressive strength higher than those with 6% cement.

  • [1]

    Ondova, M. Stevulova N., Palascakova L., Estokova A. The study of concrete properties prepared with a proportion of fly ash, Pollack Periodica, Vol. 9, No. Supplement 1, 2014, pp. 105115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2]

    El Mir A., Nehme S. G. Effect of air entraining admixture on the properties of self-compacting concrete incorporating supplementary cementitious materials, Pollack Periodica, Vol. 12, No. Supplement 3, 2017, pp. 8598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3]

    Sahu B. K. Improvement in California bearing ratio of various soils in Botswana by fly ash, International Ash Utilization Symposium, University of Kentucky, USA, 2001, Paper No. 90, pages 7.

    • Search Google Scholar
    • Export Citation
  • [4]

    Dutta R. K., Sarda V. K. CBR behavior of waste plastic strip-reinforced stone dust/fly ash overlying saturated clay, Turkish J. Eng. Env. Sci. Vol. 31, 2007, pp. 171182.

    • Search Google Scholar
    • Export Citation
  • [5]

    Rajak T. K., Pal S. K. CBR values of soil mixed with fly ash and lime, International Journal of Engineering Research & Technology, Vol. 4, No. 2, 2015, pp. 762768.

    • Search Google Scholar
    • Export Citation
  • [6]

    Jafer H. M., Atherton W., Ruddock F., Loffill E. The utilization of two types of fly ashes used as cement replacement in soft soil stabilization, World Academy of Science. Engineering and Technology, International Journal of Civil and Environmental Engineering, Vol. 10, No. 7, 2016, pp. 933936.

    • Search Google Scholar
    • Export Citation
  • [7]

    Pai R. R., Patel S. Effect of GGBS and lime on the strength characteristics of black cotton soil, in Thyagaraj T. (Ed.) Ground Improvement Techniques and Geosynthetics, Lecture Notes in Civil Engineering, Vol. 14. Springer, Singapore, 2016, Indian Geotechnical Conference, Madras, Chennai, India, 15-17 December 2016, pp. 319328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8]

    ASTM D-423, Method of test for liquid limit of soils, 2007.

  • [9]

    AASHTO T90, Standard method of test for determining the plastic limit and plasticity index of soils, 2004.

  • [10]

    BS 1377-3:2018, Methods of test for soils for civil engineering purposes, Chemical and electro-chemical tests, 2018.

  • [11]

    AASHTO T-180, Standard method of test for moisture-density relations of soils using a 4.54-kg (10-lb) rammer and a 457-mm (18-in.) drop, 2004.

    • Search Google Scholar
    • Export Citation
  • [12]

    AASHTO T-193, Standard method of test for the California bearing ratio, 2004.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Amália Iványi

Editor(s)-in-Chief: Péter Iványi

Associate Editor: 

János Gyergyák

Scientific Secretary: 

Miklós M. Iványi

Editorial Board

  • Bálint BACHMANN (Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Jeno BALOGH (Department of Civil Engineering Technology, Metropolitan State University of Denver, Denver, Colorado, USA)
  • Magdaléna BÁLINTOVÁ (Institute of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice. Kosice, Slovakia)
  • Radu BANCILA (Department of Geotechnical Engineering and Terrestrial Communications Ways, Faculty of Civil Engineering and Architecture, “Politehnica” University Timisoara, Romania)
  • Charalambos C. BANIOTOPULOUS (Department of Civil Engineering, Chair of Sustainable Energy Systems, Director of Resilience Centre, School of Engineering, University of Birmingham, U.K.)
  • Oszkar BIRO (Graz University of Technology, Institute of Fundamentals and Theory in Electrical Engineering, Austria)
  • Ágnes BORSOS (Institute of Architecture, Department of Interior, Applied and Creative Design, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Matteo BRUGGI (Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Italy)
  • Petra BUJŇÁKOVÁ (Department of Structures and Bridges, Faculty of Civil Engineering, University of Žilina, Slovakia)
  • Anikó Borbála CSÉBFALVI (Department of Civil Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Mirjana S. DEVETAKOVIĆ (Faculty of Architecture, University of Belgrade, Serbia)
  • Adriana EŠTOKOVA (Institute of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice. Kosice, Slovakia
  • Fabrizio FINUCCI (Dipartimento di Architettura  Università Degli Studi Roma Tre, Roma, Italy)
  • Szabolcs FISCHER (Department of Transport Infrastructure and Water Resources Engineering, Faculty of Architerture, Civil Engineering and Transport Sciences Széchenyi István University, Győr, Hungary)
  • Radomir FOLIC (Department of Civil Engineering, Faculty of Technical Sciences, University of Novi Sad Serbia)
  • Jana FRANKOVSKÁ (Department of Geotechnics, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia)
  • Elena HELEREA (Dept. of Electrical Engineering and Applied Physics, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Romania)
  • Ákos HUTTER (Department of Architecture and Urban Planning, Institute of Architecture, Faculty of Engineering and Information Technolgy, University of Pécs, Hungary)
  • Károly JÁRMAI (Institute of Energy and Chemical Machinery, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary)
  • Teuta JASHARI-KAJTAZI (Department of Architecture, Faculty of Civil Engineering and Architecture, University of Prishtina, Kosovo)
  • Xue KANG (Faculty of Architecture and Environmental Arts, Sichuan Fine Arts Institute, Chongqing, China)
  • Róbert KERSNER (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Rita KISS (Biomechanical Cooperation Center, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary)
  • István KISTELEGDI (Department of Simulation Design, Institute of Architecture, Ybl Miklós Faculty of Architecture and Civil Engineering, Óbuda University, Budapest, Hungary)
  • Imre KOCSIS (Department of Basic Engineering Research, Faculty of Engineering, University of Debrecen, Hungary)
  • László T. KÓCZY (Department of Information Sciences, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, University of Győr, Hungary)
  • Dražan KOZAK (Faculty of Mechanical Engineering, University of Slavonski Brod, Slavonski Brod, Croatia)
  • Balázs Géza KÖVESDI (Department of Structural Engineering, Faculty of Civil Engineering, Budapest University of Engineering and Economics, Budapest, Hungary)
  • Tomáš KREJČÍ (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
  • Jaroslav KRUIS (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
  • Miklós KUCZMANN (Department of Automations, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, Széchenyi István University, Győr, Hungary)
  • Maria Jesus LAMELA-REY (Departamento de Construcción e Ingeniería de Fabricación, University of Oviedo, Spain)
  • János LÓGÓ (Department of Structural Mechanics, Faculty of Civil Engineering, Budapest University of Technology and Economics, Hungary)
  • Frédéric MAGOULÉS (Department of Mathematics and Informatics for Complex Systems, Centrale Supélec, Université Paris Saclay, France)
  • Gabriella MEDVEGY (Department of Interior, Applied and Creative Design, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Barhm Abdullah MOHAMAD (Department of Petroleum, Control and Operation, Koya Technical Institute, Erbil Polytechnic University, Kurdistan Region, Iraq)
  • Tamás MOLNÁR (Department of Visual Studies, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Rad Majid MOVAHEDI (Department of Structural Engineering and Geotechnics, Faculty of Architecture Civil Engineering and Transport Sciences, Széchenyi István University, Győr, Hungary
  • Ferenc ORBÁN (Department of Mechanical Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Zoltán ORBÁN (Department of Civil Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Dmitrii RACHINSKIY (Department of Mathematical Sciences, The University of Texas at Dallas, Texas, USA)
  • Chro RADHA (Chro Ali Hamaradha) (Sulaimani Polytechnic University, Technical College of Engineering, Department of City Planning, Kurdistan Region, Iraq)
  • Maurizio REPETTO (Department of Energy “Galileo Ferraris”, Politecnico di Torino, Italy)
  • Olena SAVCHENKO (Department of Heat and Gas Supply and Ventilation, Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, Lviv, Ukraine)
  • Zoltán SÁRI (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Grzegorz SIERPIŃSKI (Department of Transport Systems and Traffic Engineering, Faculty of Transport, Silesian University of Technology, Katowice, Poland)
  • Zoltán SIMÉNFALVI (Institute of Energy and Chemical Machinery, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary)
  • Andrej ŠOLTÉSZ (Department of Hydrology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia)
  • Hussein Kareem SULTAN (Department of Civil Engineering, College of Engineering, Al-Muthanna University, Samawa, Iraq)
  • Zsolt SZABÓ (Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Hungary)
  • Mykola SYSYN (Chair of Planning and Design of Railway Infrastructure, Institute of Railway Systems and Public Transport, Technical University of Dresden, Germany)
  • Barry H. V. TOPPING (Heriot-Watt University, UK, Faculty of Engineering and Information Technology, University of Pécs, Hungary)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: peter.ivanyi@mik.pte.hu 

or amalia.ivanyi@mik.pte.hu

Indexing and Abstracting Services:

  • SCOPUS
  • CABELLS Journalytics

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.385
SJR Q rank Q3

2023  
Scopus  
CiteScore 1.5
CiteScore rank Q3 (Civil and Structural Engineering)
SNIP 0.849
Scimago  
SJR index 0.288
SJR Q rank Q3

Pollack Periodica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 381 EUR / 420 USD
Print + online subscription: 456 EUR / 520 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

 

Pollack Periodica
Language English
Size A4
Year of
Foundation
2006
Volumes
per Year
1
Issues
per Year
3
Founder Faculty of Engineering and Information Technology, University of Pécs
Founder's
Address
H–7624 Pécs, Hungary, Boszorkány utca 2.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-1994 (Print)
ISSN 1788-3911 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2025 48 0 0
Feb 2025 84 0 0
Mar 2025 80 0 0
Apr 2025 23 0 0
May 2025 30 0 0
Jun 2025 27 0 0
Jul 2025 0 0 0