View More View Less
  • 1 Department of Civil Engineering, Tehran Branch Islamic Azad University, Tehran, Islamic Republic of Iran
  • | 2 Department of Civil Engineering, Malayer University, Malayer 65719-95863, Islamic Republic of Iran
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

Abstract

The behavior of box-shaped columns under heating is investigated. For this purpose, the various sections of thin-wall box-shaped columns were modeled and verified in different temperature ranges by ABAQUS software. The results of this research showed that increasing the thickness leads to increase the buckling stability of column under temperature change. Since the behavior of column will be better than thinner columns under climate change because of the increase in the modulus of elasticity. The solid columns have better buckling stability than hollow columns in normal conditions.

  • [1]

    L. S. Da Silva, A. Santiago, P. V. Real, and D. Moore, “Behavior of steel joints under fire loading,” Steel Compos. Struct., vol. 5, no. 6, pp. 485513, 2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2]

    L. C. Leston-Jones, “The influence of semi-rigid connections on the performance of steel framed structures in fire,” PhD Thesis, University of Sheffield, 1997.

    • Search Google Scholar
    • Export Citation
  • [3]

    R. M. Lawson, “Behavior of steel beam-to-column connections in fire,” Struct. Eng., vol. 68, pp. 263271, 1990.

  • [4]

    L. H. Han and J. S. Huo, “Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard,” ASCE, J. Struct. Eng., vol. 129, no. 1, pp. 6878, 2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5]

    K. S. Al-Jabri, I. W. Burgess, T. Lennon, and R. J. Plank, “Moment-rotation-temperature curves for semi-rigid joints,” J. Construct. Steel Res., vol. 61, no. 3, pp. 281303, 2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    W. Y. Wang, G. Q. Li, and Y. L. Dong, “Experimental study and spring-component modeling of extended end-plate joints in fire,” J. Construct. Steel Res., vol. 63, no. 8, pp. 11271137, 2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7]

    F. C. T. Gomes, P. M. P. e Costa, J. P. C. Rodrigues, and I. C. Neves, “Buckling length of a steel column for fire design,” Eng. Struct. , vol. 29, no. 10, pp. 24972502, 2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8]

    V. K. R. Kodur and M. M. S. Dwaikat, “Response of steel beam-columns exposed to fire,” Eng. Struct., vol. 31, no. 2, pp. 369379, 2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    G. Q. Li, P. Wang, and Y. Wang, “Behavior and design of restrained steel column in fire, Part 1: Fire test,” J. Construct. Steel Res., vol. 66, no. 8, pp. 11381147, 2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [10]

    S. Fan, X. Ding, W. Sun, L. Zhang, and M. Liu, “Experimental investigation on fire resistance of stainless steel columns with square hollow section,” Thin-Walled Struct., vol. 98, Part A, pp. 196211, 2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11]

    I. Žmak and T. Filetin, “Predicting thermal conductivity of steels using artificial neural networks”, Trans. FAMENA, (University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture), vol. 34, no. 3, pp. 1120, 2010.

    • Search Google Scholar
    • Export Citation
  • [12]

    M. Lazarevska, M. Milanović, M. Knežević, M. Cvetkovska, A. Trombeva-Gavrilovska, and T. Samardzioska, “An artificial neural network prediction model for fire resistance of composite columns,” J. Appl. Eng. Sci., vol. 12, no. 1, pp. 6368, 2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [13]

    T. Hozjan, G. Turk, and I. Fister, “Hybrid artificial neural network for fire analysis of steel frames,” in Adaptation and Hybridization in Computational Intelligence, I. Fister and I. Fister Jr., eds, Adaptation, Learning, and Optimization Series, vol. 18, pp. 149169, 2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14]

    B. Podgornik, I. Belič, V. Leskovšek, and M. Godec, “Tool steel heat treatment optimization using neural network modeling,” Metallurgical Mater. Trans. A, vol. 47, no. 11, pp. 56505659, 2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15]

    I. Jancskar, “IR-image based inverse radiative heat transfer problem,” Pollack Period., vol. 8, no. 1, pp. 7587, 2013.

  • [16]

    D. Marcsa and M. Kuczmann, Modeling of radial magnetic bearing by finite element method,” Pollack Period., vol. 6, no. 2, pp. 1324, 2011.

    • Search Google Scholar
    • Export Citation
  • [17]

    B. Jafari and B. Badarloo, “Finite element analysis and ANFIS investigation of seismic behavior of sandwich panels with different concrete material in two story steel building,” Frattura ed Integrità Strutturale, vol. 13, no. 50, pp. 209230, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [18]

    B. Badarloo and F. Jafari, “A numerical study on the effect of position and number of openings on the performance of composite steel shear walls,” Buildings, vol. 8, no. 9, pp. 121149, 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [19]

    K. Hibbett and Sorensen, ABAQUS/standard: User’s Manual. vol. 1, 1998.

  • [20]

    M. Grant, S. Boyd, and Y. Ye, CVX: MATLAB Software for Disciplined Convex Programming. 2008.

  • [21]

    J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-fuzzy and Soft Computing; a Computational Approach to Learning and Machine Intelligence. Englewood Cliffs. 1997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [22]

    J. S. R. Jang, “Input selection for ANFIS learning,” in Proceedings of the IEEE Fifth International Conference on Fuzzy Systems, New Orleans, LA, USA, 11-11 September 1996, 1996, vol. 2, pp. 14931499.

    • Search Google Scholar
    • Export Citation
  • [23]

    B. Badarloo and F. Jafari, “Numerical study on the effect of concrete grade on the CFT circular column’s behavior under axial load,” Civil Eng. J., vol. 5, no. 11, pp. 23592376, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 9 1 0
Apr 2021 20 1 2
May 2021 12 0 0
Jun 2021 12 0 0
Jul 2021 0 0 0