During the flood situations in May and June 2010, the culmination of the Váh River and the Danube River was accompanied by the groundwater level rising in the Rye Island, in some boreholes even to their maximum measured levels. The increased groundwater level caused major problems, e.g. flooded cellars and underground spaces, contaminated drinking water in wells, flooded railways and farmlands. As a part of the research concentrating on the groundwater flooding phenomena in the Rye Island, the flood situation from the year 2010 was reconstructed, establishing the basis for a construction of the flood hazard maps and flood risk management plans. The problem was solved with a MODFLOW numerical model using the Groundwater Modeling System.
“Directive 2007/60/EC of the European parliament and of the Council of 23 October 2007 on the assessment and management of flood risks,” in Official Journal of the European Union, 2007, pp. L288/27–L288/34.
“Vulnerability and adaptation to climate change,” in European Environment Agency Briefing, Copenhagen, Denmark, 2005.
“Flood risks and environmental vulnerability. Exploring the synergies between floodplain restoration, water policies and thematic policies,” European Environment Agency, Copenhagen, Denmark, 2016.
K. Ullrich and T. Sommer , “Effects of the 2002 flood on groundwater,” Research paper (in German), Dresden: Landeshauptstadt Dresden, 2005.
T. Sommer , “Development of multi-sequential precautionary strategies for urban habitats at risk of groundwater flooding (‘MULTISURE’),” Final report (in German), Dresdner Grundwasserforschungszentrum, Dresden, Germany, 2010.
R. Schinke , M. Neubert , J. Hennersdorf , U. Stodolny , T. Sommer , and T. Naumann , “Damage estimation of subterranean building constructions due to groundwater inundation - The GIS-based model approach GRUWAD,” Nat. Hazards Earth Syst. Sci., vol. 12, no. 9, pp. 2865–2877, 2012.
Groundwater data, information and services. [Online]. Available: https://www.bgs.ac.uk/research/groundwater/datainfo/home.html. Accessed: Nov. 26, 2019.
B. Adams , J. P. Bloomfield , A. J. Gallagher , C. R. Jackson , H. K. Rutter , and A. T. Williams , “An early warning system for groundwater flooding in the Chalk,” Q. J. Eng. Geology. Hydrogeol., vol. 43, no. 2, pp. 185–193, 2010.
M. Maller , A. Rehák , and G. Hajnal , “Water level fluctuation in karst aquifers in the Trandsanubian range (Hungary),” Pollack Period., vol. 13, no. 3, pp. 151–162, 2018.
T. Julínek , D. Duchan , and J. Říha , “Mapping of uplift hazard due to rising groundwater level during floods,” J. Flood Risk Manag., Spec. Issue, pp. 1–13, 2020.
E. Kullman , J. Gavurník , B. Bodácz , and Z. Pal’ušová , “The historic Danubian flood in 2013 and its impact on groundwater levels” (in Slovak), in Manažment Povodí a Povodňových Rizík, Výskumný Ústav Vodného Hospodárstva, Bratislava, 2013, pp. 11–13.
M. Červeňanská , D. Baroková , A. Šoltész , and A. Janík , “Preliminary assessment of flood risk due to increased groundwater levels in Slovakia,” in 16th International Multidisciplinary Scientific GeoConference, Albena, Bulgaria, Jun. 30–Jul. 6, 2016, 2016, pp. 223–228.
M. Červeňanská , D. Baroková , and A. Šoltész , “Case study on groundwater flooding: the lower part of the Rye Island,” J. Landscape Manag., vol. 11, no. 2, pp. 7–11, 2020.
D. Duba , Groundwater Hydrology (in Slovak). Bratislava: Vydavatel’stvo Slovenskej akadémie vied v Bratislave, 1968.
A. Porubský , Water Management Plan of the Slovak Socialist Republic. VII. Danube Basin. Map No. 5. Water Management-hydrogeological Map 1: 200 000. Text Explanations (in Slovak). Bratislava: Geografický ústav SAV, 1976.
A. Blahová , K. Matoková , P. Smrtník , M. Hazlinger , T. Masár , M. Bírová , P. Parditka , J. Pecho , D. Lešková , J. Poórová , M. Jarošová , J. Kozub , P. Škoda , P. Mráček , and V. Wendlová , Flood Situation on the Streams of Western Slovakia in May and June 2010 (in Slovak). Bratislava: Slovenský hydrometeorologický ústav, Centrum predpovedí a výstrah, Odbor Hydrologické predpovede a výstrahy, 2010.
Data provided from the Slovak Hydrometeorological Institute, 2020.
Assessment of the hydrological year 2010 (in Slovak). [Online]. Available: http://www.shmu.sk/File/Hydrologia/Monitoring_PV_PzV/Monitoring_kvantity_PzV/KnPzV_2010/KnPzV_2010_hodnotenie.pdf. Accessed: Jan. 7, 2020.
Groundwater modeling system. [Online]. Available: https://www.aquaveo.com/software/gms-groundwater-modeling-system-introduction. Accessed: May 2, 2020.
M. G. Mcdonald and A. W. Harbaugh , A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, Chapter A1. US Gological Survey, 1988.
Aeronautical laser scanning and DRM 5.0 (in Slovak). [Online]. Available: https://www.geoportal.sk/sk/udaje/lls-dmr/. Accessed: Feb. 14, 2020.
Final reports and assessments of the Geofond digital archive (in Slovak). [Online]. Available: https://www.geology.sk/sluzby/digitalny-archiv/. Accessed: Dec. 12, 2019.
Data provided from the Slovak Water Management Enterprise, 2020.
P. Dušek and Y. Velísková , “Comparison of the MODFLOW modules for the simulation of the river type boundary condition,” Pollack Period., vol. 12, no. 3, pp. 3–13, 2017.
Assessment of the hydrological year, 2008 (in Slovak). [Online]. Available: http://www.shmu.sk/File/Hydrologia/Monitoring_PV_PzV/Monitoring_kvantity_PzV/KnPzV_2008/KnPzV_2008_hodnotenie.pdf. Accessed: Jan. 7, 2020.
M. P. Anderson and W. Woessner , Applied Groundwater Modeling. Simulation of Flow and Advective Transport, California: Academic press, 1992.
STN 73 1001:2010, Geotechnical Structures, Foundation of buildings (in Slovak). Bratislava: Office for Standardization, Metrology and Testing of the Slovak Republic, Department of Technical Standardization, 2010.