Authors:
Rasha Ali Kamil Department of Civil Engineering, Faculty of Engineering, University of Kufa, Najaf, Iraq

Search for other papers by Rasha Ali Kamil in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1081-8274
,
Huda M. Atiea Department of Environmental Planning, Faculty of Physical Planning, University of Kufa, Najaf, Iraq

Search for other papers by Huda M. Atiea in
Current site
Google Scholar
PubMed
Close
,
Ali Abbas Kadhem Department of Chemical Engineering, Faculty of Engineering, University of Kufa, Najaf, Iraq

Search for other papers by Ali Abbas Kadhem in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2990-572X
,
Layth Abdulrasool Alasadi Department of Structures and Water Resources Engineering, Faculty of Engineering, University of Kufa, Najaf, Iraq

Search for other papers by Layth Abdulrasool Alasadi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6244-7965
, and
Qusay A. Jabal Department of Civil Engineering, Faculty of Engineering, University of Kufa, Najaf, Iraq

Search for other papers by Qusay A. Jabal in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5382-0016
Restricted access

Abstract

In this article, polymer-modified concrete was studied to present the effect of using additives on its mechanical properties. This will be achieved by employing a high-performance super plasticizing admixture that significantly enhances polymer-modified concrete mechanical capabilities. The study indicates that the polymer styrene-butadiene rubber (used increases concrete mechanical properties by 10% by weight. When the dosage exceeds 10% by weight of cement, the compressive, tensile, and flexural strengths of polymer-modified concrete are diminished. With the addition of a superplasticizer with a ratio of 1.2%, regular polymer-modified concrete compressive strength has increased from 34.3 to 42.9 MPa for a 10% polymer/cement ratio. Additionally, this superplasticizer enhanced the Material's flexural and tensile strength.

  • [1]

    A. C. Mane and Y. M. Ghugal, “Polymer modified steel fiber concrete: Review,” Inter. Jour. Eng. Res. Tech., vol. 4, no. 4, pp. 288292, 2015.

    • Search Google Scholar
    • Export Citation
  • [2]

    I. Ion, J. L. B. Aguiar, N. Angelescu, and D. Stanciu, “Properties of polymer modified concrete in the fresh and hardened state,” Adv. Mater. Res., vol. 687, pp. 204212, 2013.

    • Search Google Scholar
    • Export Citation
  • [3]

    A. I. Al-Hadithi and S. Hama, “Some mechanical properties of polymer modified concrete reinforced with a waste plastic fiber,” in First Scientific Conference of College of Engineering, Babylon University Babylon, Iraq, May 13–15, 2009, The Iraqi Journal of Mechanical and Materials Engineering, Special Issue, vol. 1, no. 1, 2009, pp. 653664.

    • Search Google Scholar
    • Export Citation
  • [4]

    A. S. Momtazi, R. K. Khoshkbijari, and S. S. Mogharab, “Polymers in concrete: applications and specifications,” Eur. Online J. Nat. Social Sci., vol. 3, no. 3, Special Issue, pp. 6272.

    • Search Google Scholar
    • Export Citation
  • [5]

    T. M. Mezher, K. M. Breesem, D. R. Hassen, and A. A. Jaafar, “Stress-strain behavior and flexural strength of silica fume polymer modified concrete,” IOP Conference Series: Materials Science and Engineering, vol. 881, 2020, Paper no. 012167.

    • Search Google Scholar
    • Export Citation
  • [6]

    A. Islam, M. Rahman, and M. Ahmed, “Polymer-modified concrete: World experience and potential for Bangladesh,” Indian Concrete J., vol. 85, no. 1, pages 19, 2011.

    • Search Google Scholar
    • Export Citation
  • [7]

    P. N. Ojha, P. Kaura, B. Singh, Y. N. Daniel, and N. Kumar, “Evaluation of polymer modified mortar and bonding agent for structural repair,” J. Asian Concrete Fed., vol. 7, no. 2, pp. 5662, 2021.

    • Search Google Scholar
    • Export Citation
  • [8]

    IS 383:1970, Specification for coarse and fine aggregates from natural sources for concrete, Bureau of Indian Standards.

  • [9]

    BS 1881: Part 118: 1983, Testing concrete. Part 118, Method for determination of flexural strength, British Standard Institution, UK, 1983.

    • Search Google Scholar
    • Export Citation
  • [10]

    M. A. Qadri, H. Hameed, and O. BhuttaFresh and hardened properties of Styrene Butadiene Rubber (SBR) modified concrete,” Eur. J. Eng. Technol. Res., vol. 5, no. 4, pp. 457461, 2020.

    • Search Google Scholar
    • Export Citation
  • [11]

    A. Gojević, V. Ducman, I. Nr Grubeša, A. Baričević, and I. B. Pečur, “The effect of crystalline water-proofing admixture on the self-healing and permeability of concrete,” Materials, vol. 14, no. 8, 2021, Paper no. 1860.

    • Search Google Scholar
    • Export Citation
  • [12]

    P. N. Reddy and J. A. Naqash, “Effectiveness of polycarboxylate ether on early strength development of alccofine concrete,” Pollack Period., vol. 15, no. 1, pp. 7990, 2020.

    • Search Google Scholar
    • Export Citation
  • [13]

    A. Al-Hdabi, M. K. Fakhraldin, R. A. Al-Fatlawy, and T. S. Ali, “Investigate the effect of paper sludge ash addition on the mechanical properties of granular materials,” Pollack Period., vol. 15, no. 3, pp. 7990, 2020.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

 

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • Bálint Bachmann (Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Jeno Balogh (Department of Civil Engineering Technology, Metropolitan State University of Denver, Denver, Colorado, USA)
  • Radu Bancila (Department of Geotechnical Engineering and Terrestrial Communications Ways, Faculty of Civil Engineering and Architecture, “Politehnica” University Timisoara, Romania)
  • Charalambos C. Baniotopolous (Department of Civil Engineering, Chair of Sustainable Energy Systems, Director of Resilience Centre, School of Engineering, University of Birmingham, U.K.)
  • Oszkar Biro (Graz University of Technology, Institute of Fundamentals and Theory in Electrical Engineering, Austria)
  • Ágnes Borsos (Institute of Architecture, Department of Interior, Applied and Creative Design, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Matteo Bruggi (Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Italy)
  • Petra Bujňáková (Department of Structures and Bridges, Faculty of Civil Engineering, University of Žilina, Slovakia)
  • Anikó Borbála Csébfalvi (Department of Civil Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Mirjana S. Devetaković (Faculty of Architecture, University of Belgrade, Serbia)
  • Szabolcs Fischer (Department of Transport Infrastructure and Water Resources Engineering, Faculty of Architerture, Civil Engineering and Transport Sciences Széchenyi István University, Győr, Hungary)
  • Radomir Folic (Department of Civil Engineering, Faculty of Technical Sciences, University of Novi Sad Serbia)
  • Jana Frankovská (Department of Geotechnics, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia)
  • János Gyergyák (Department of Architecture and Urban Planning, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Kay Hameyer (Chair in Electromagnetic Energy Conversion, Institute of Electrical Machines, Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Germany)
  • Elena Helerea (Dept. of Electrical Engineering and Applied Physics, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Romania)
  • Ákos Hutter (Department of Architecture and Urban Planning, Institute of Architecture, Faculty of Engineering and Information Technolgy, University of Pécs, Hungary)
  • Károly Jármai (Institute of Energy and Chemical Machinery, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary)
  • Teuta Jashari-Kajtazi (Department of Architecture, Faculty of Civil Engineering and Architecture, University of Prishtina, Kosovo)
  • Róbert Kersner (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Rita Kiss  (Biomechanical Cooperation Center, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary)
  • István Kistelegdi  (Department of Building Structures and Energy Design, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Stanislav Kmeť (President of University Science Park TECHNICOM, Technical University of Kosice, Slovakia)
  • Imre Kocsis  (Department of Basic Engineering Research, Faculty of Engineering, University of Debrecen, Hungary)
  • László T. Kóczy (Department of Information Sciences, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, University of Győr, Hungary)
  • Dražan Kozak (Faculty of Mechanical Engineering, Josip Juraj Strossmayer University of Osijek, Croatia)
  • György L. Kovács (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Balázs Géza Kövesdi (Department of Structural Engineering, Faculty of Civil Engineering, Budapest University of Engineering and Economics, Budapest, Hungary)
  • Tomáš Krejčí (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
  • Jaroslav Kruis (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
  • Miklós Kuczmann (Department of Automations, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, Széchenyi István University, Győr, Hungary)
  • Tibor Kukai (Department of Engineering Studies, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Maria Jesus Lamela-Rey (Departamento de Construcción e Ingeniería de Fabricación, University of Oviedo, Spain)
  • János Lógó  (Department of Structural Mechanics, Faculty of Civil Engineering, Budapest University of Technology and Economics, Hungary)
  • Carmen Mihaela Lungoci (Faculty of Electrical Engineering and Computer Science, Universitatea Transilvania Brasov, Romania)
  • Frédéric Magoulés (Department of Mathematics and Informatics for Complex Systems, Centrale Supélec, Université Paris Saclay, France)
  • Gabriella Medvegy (Department of Interior, Applied and Creative Design, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Tamás Molnár (Department of Visual Studies, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Ferenc Orbán (Department of Mechanical Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Zoltán Orbán (Department of Civil Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Dmitrii Rachinskii (Department of Mathematical Sciences, The University of Texas at Dallas, Texas, USA)
  • Chro Radha (Chro Ali Hamaradha) (Sulaimani Polytechnic University, Technical College of Engineering, Department of City Planning, Kurdistan Region, Iraq)
  • Maurizio Repetto (Department of Energy “Galileo Ferraris”, Politecnico di Torino, Italy)
  • Zoltán Sári (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Grzegorz Sierpiński (Department of Transport Systems and Traffic Engineering, Faculty of Transport, Silesian University of Technology, Katowice, Poland)
  • Zoltán Siménfalvi (Institute of Energy and Chemical Machinery, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary)
  • Andrej Šoltész (Department of Hydrology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia)
  • Zsolt Szabó (Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Hungary)
  • Mykola Sysyn (Chair of Planning and Design of Railway Infrastructure, Institute of Railway Systems and Public Transport, Technical University of Dresden, Germany)
  • András Timár (Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Barry H. V. Topping (Heriot-Watt University, UK, Faculty of Engineering and Information Technology, University of Pécs, Hungary)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: peter.ivanyi@mik.pte.hu 

or amalia.ivanyi@mik.pte.hu

Indexing and Abstracting Services:

  • SCOPUS
  • CABELLS Journalytics

 

2023  
Scopus  
CiteScore 1.5
CiteScore rank Q3 (Civil and Structural Engineering)
SNIP 0.849
Scimago  
SJR index 0.288
SJR Q rank Q3

Pollack Periodica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 381 EUR / 420 USD
Print + online subscription: 456 EUR / 520 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

 

2023  
Scopus  
CiteScore 1.5
CiteScore rank Q3 (Civil and Structural Engineering)
SNIP 0.849
Scimago  
SJR index 0.288
SJR Q rank Q3

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 190 1 1
Nov 2024 51 0 0
Dec 2024 28 0 0
Jan 2025 62 0 0
Feb 2025 65 1 1
Mar 2025 71 1 0
Apr 2025 0 0 0