The study analyzed surface treatment's impact on mechanical properties of Fe-based amorphous coatings. Specimens underwent six-hour treatments at 670 and 770 °C using vacuum heat. Results revealed distinct mechanical features in the coating: Vickers hardness reached 755, scanning electron microscope images displayed glassy phases, showcasing good wear resistance and compressive residual stresses at around −55 MPa. A remarkable 122% increase in compressive residual stress was noted through combined vacuum heat treatment and sandblasting. Volume wear decreased from the initial 18 to 14 mm3 after treatment at 670 °C followed by sandblasting, indicating a 30% enhancement in wear resistance. Yet, using vacuum heat treatment at 770 °C negatively impacted the coating's properties.
T. J. Lin, H. H. Sheu, C. Y. Lee, and H. B. Lee, “The study of mechanical properties and corrosion behavior of the Fe-based amorphous alloy coatings using high velocity oxygen fuel spraying,” J. Alloys Compd., vol. 867, 2021, Art no. 159132.
G. Ghosh, A. Sidpara, and P. P. Bandyopadhyay, “Fabrication of mechanically durable slippery surface on HVOF sprayed WC-Co coating,” Surf. Coat. Technol., vol. 394, 2020, Art no. 125886.
B. Fotovvati, N. Namdari, and A. Dehghanghadikolaei, “On coating techniques for surface protection: A review,” J. Manufacturing Mater. Process., vol. 3, no. 1, 2019, Art no. 28.
W. Fu, Q. Y. Chen, C. Yang, D. L. Yi, H. L. Yao, H. T. Wang, G. C. Ji, and F. Wang, “Microstructure and properties of high velocity oxygen fuel sprayed (WC-Co)-Ni coatings,” Ceramics Int., vol. 46, no. 10, Part A, pp. 14940–14948, 2020.
T. Varis, T. Suhonen, O. Calonius, J. Cuban, and M. Pietola, “Optimization of HVOF Cr3C2NiCr coating for increased fatigue performance,” Surf. Coat. Technol., vol. 305, pp. 123–131, 2016.
G. Y. Koga, W. Wolf, R. Schulz, S. Savoie, C. Bolfarini, C. S. Kiminami, and W. J. Botta, “Corrosion and wear properties of FeCrMnCoSi HVOF coatings,” Surf. Coat. Technol., vol. 357, pp. 993–1003, 2019.
E. S. Puchi-Cabrera, M. H. Staia, M. J. Ortiz-Mancilla, J. G. La barbera-Sos, E. A. O. Perez, C. Villalobos-Gutierrez, S. Bellayer, M. Traisnel, D. Chiot, and J. Lesage, “Fatigue behavior of a SAE 1045 steel coated with Colmonoy 88 alloy deposited by HVOF thermal spray,” Surf. Coat. Technol., vol. 205, no. 4, pp. 1119–1126, 2010.
T. Suhonen, T. Varis, S. Dosta, M. Torrell, and J. M. Guilemany, “Residual stress development in cold sprayed Al, Cu and Ti coatings,” Acta Materialia, vol. 61, no. 17, pp. 6329–6337, 2013.
O. P. Oladijo, L. L. Collieus, B. A. Obadele, and E. T. Akinlabi, “Correlation between residual stresses and the tribological behavior of Inconel 625 coatings,” Surf. Coat. Technol., vol. 419, 2021, Art no. 127288.
Š. Houdková and M. Kašparová, “Experimental study of indentation fracture toughness in HVOF sprayed hardmetal coatings,” Eng. Fracture Mech., vol. 110, pp. 468–476, 2013.
G. Ghosh, A. Sidpara, and P. P. Bandyopadhyay, “High efficiency chemical assisted nanofinishing of HVOF sprayed WC-Co coating,” Surf. Coat. Technol., vol. 334, pp. 204–214, 2018.
S. F. Guo, F. S. Pan, H. J. Zhang, D. F. Zhang, J. F. Wang, J. Miao, C. Su, and C. Zhang, “Fe-based amorphous coating for corrosion protection of magnesium alloy,” Mater. Des., vol. 108, pp. 624–631, 2016.
A. List, F. Gärtner, T. Mori, M. Schulze, H. Assadi, S. Kuroda, and T. Klassen, “Cold spraying of amorphous Cu 50 Zr 50 alloys,” J. Therm. Spray Technol., vol. 24, pp. 108–118, 2015.
P. Ding, X. J. Liu, J. J. Liu, J. B. Li, H. Q. Li, H. Y. Zhao, J. Y. Duan, and Y. Z. Jiao, “Study on the properties of FeCrNi/CBN composite coating with high velocity arc spraying,” Arabian J. Chem., vol. 11, no. 6, pp. 935–941, 2018.
A. Yumashev, B. Ślusarczyk, S. Kondrashev, and A. Mikhaylov, “Global indicators of sustainable development: Evaluation of the influence of the human development index on consumption and quality of energy,” Energies, vol. 13, no. 11, 2020, Art no. 2768.
D. Nie, E. Panfilova, V. Samusenkov, and A. Mikhaylov, “E-learning financing models in Russia for sustainable development,” Sustainability, vol. 12, no. 11, 2020, Art no. 4412.
L. Liu and C. Zhang, “Fe-based amorphous coatings: Structures and properties,” Thin Solid Films, vol. 561, pp. 70–86, 2014.
A. Inoue and A. Takeuchi, “Recent development and application products of bulk glassy alloys,” Acta Materialia, vol. 59, no. 6, pp. 2243–2267, 2011.
Q. Wang, P. Han, S. Yin, W. J. Niu, L. Zhai, X. Li, X. Mao, and Y. Han, “Current research status on cold sprayed amorphous alloy coatings: A review,” Coatings, vol. 11, no. 2, 2021, Art no. 206.
J. J. Kruzic, “Bulk metallic glasses as structural materials: A review,” Adv. Eng. Mater., vol. 18, no. 8, pp. 1308–1331, 2016.
A. L. Greer, Y. Q. Cheng, and E. Ma, “Shear bands in metallic glasses,” Mater. Sci. Eng. R: Rep., vol. 74, no. 4, pp. 71–132, 2013.
V. M. Ievlev, S. V. Kannyikin, T. N. Il’inova, V. V. Vavilova, S. B. Kushchev, D. V. Serikov, and A. S. Baikin, “Heat treatment-and lamp processing-induced structural transformations of an amorphous Fe 77 B 7 Nb 2.1 Si 13 Cu 0.9 alloy and non-monotonic behavior of its mechanical properties,” Inorg. Mater., vol. 55, pp. 659–668, 2019.
N. Kang, P. Coddet, H. Liao, and C. Coddet, “The effect of heat treatment on microstructure and tensile properties of cold spray Zr base metal glass/Cu composite,” Surf. Coat. Technol., vol. 280, pp. 64–71, 2015.
I. V. Kozlov, G. N. Elmanov, K. E. Prikhodko, L. V. Kutuzov, B. A. Tarasov, V. V. Mikhalchik, R. D. Svetogorov, V. S. Mashera, E. S. Gorelikov, and S. A. Gudoshnikov, “The evolution of structure and magnetoimpedance characteristics of amorphous Co69Fe4Cr4Si12B11 microwires under heat treatment,” J. Magnetism Magn. Mater., vol. 493, 2020, Art no. 165681.
Z. B. Zheng, Y. G. Zheng, W. H. Sun, and J. Q. Wang, “Effect of heat treatment on the structure, cavitation erosion and erosion–corrosion behavior of Fe-based amorphous coatings,” Tribology Int., vol. 90, pp. 393–403, 2015.
S. B. Pitchuka, B. Boest, C. Zhang, D. Lahiri, A. Nieto, G. Sundararajan, and A. Agarwall, “Dry sliding wear behavior of cold sprayed aluminum amorphous/nanocrystalline alloy coatings,” Surf. Coat. Technol., vol. 238, pp. 118–125, 2014.
H. Al-Abboodi, H. Fan, I. A. Mhmood, and M. Al-Bahrani, “The dry sliding wear rate of a Fe-based amorphous coating prepared on mild steel by HVOF thermal spraying,” J. Mater. Res. Technol., vol. 18, pp. 1682–1691, 2022.
F. Huang, J. J. Kang, W. Yue, X. B. Liu, Z. Q. Fu, L. N. Zhu, D. S. She, G. Z. Ma, H. D. Wang, J. Liang, W. Weng, and C. B. Wang, “Effect of heat treatment on erosion–corrosion of Fe-based amorphous alloy coating under slurry impingement,” J. Alloys Compd., vol. 820, 2020, Art no. 153132.
Z. B. Zheng, Y. G. Zheng, W. H. Sun, and J. Q. Wang, “Effect of heat treatment on the structure, cavitation erosion and erosion–corrosion behavior of Fe-based amorphous coatings,” Tribology Int., vol. 90, pp. 393–403, 2015.
R. K. Sharma, R. K. Das, and S. R. Kumar, “Microstructure, mechanical and erosion wear analysis of post heat treated iron alloy based coating with varying chromium,” Mater. Sci. Eng. Technol., vol. 52, no. 11, pp. 1173–1184, 2021.
E. Maleki and O. Unal, “Optimization of shot peening effective parameters on surface hardness improvement,” Met. Mater. Int., vol. 27, pp. 3173–3185, 2021.
E. Maleki, G. H. Farrahi, K. R. Kashyzadeh, O. Unal, M. Gugaliano, and S. Bagherifard, “Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: Experimental and numerical simulation,” Met. Mater. Int., vol. 27, pp. 2575–2591, 2021.
E. Maleki, G. H. Farrahi, and K. Sherafatnia, “Application of artificial neural network to predict the effects of severe shot peening on properties of low carbon steel,” in Machining, Joining and Modifications of Advanced Materials, vol. 61, Springer, 2016, pp. 45–60.
S. Bagherifard, R. Ghelichi, and M. Guagliano, “A numerical model of severe shot peening (SSP) to predict the generation of a nanostructured surface layer of material,” Surf. Coat. Technol., vol. 204, no. 24, pp. 4081–4090, 2010.
Z. Jia and J. J. Ji, “Influence analysis of shot peening on hot forging die,” Int. J. Adv. Manufacturing Technol., vol. 90, pp. 1779–1787, 2017.
E. Maleki and O. Unal, “Roles of surface coverage increase and re-peening on properties of AISI 1045 carbon steel in conventional and severe shot peening processes,” Surf. Inter., vol. 11, pp. 82–90, 2018.
S. M. H. Gangaraj, M. Guagliano, and G. H. Farrahi, “An approach to relate shot peening finite element simulation to the actual coverage,” Surf. Coat. Technol., vol. 243, pp. 39–45, 2014.
B. Li, Z. Qin, H. Xue, Z. Sun, and T. Gao, “Optimization of shot peening parameters for AA7B50-T7751 using response surface methodology,” Simulation Model. Pract. Theor., vol. 115, 2022, Art no. 102426.
M. Hassanzadeh and S. E. M. Torshizi, “Multi-objective optimization of shot-peening parameters using design of experiments and finite element simulation: A statistical model,” J. Appl. Comput. Mech., vol. 8, no. 3, pp. 838–852, 2022.
X. Wang, Z. Wang, G. Wu, J. Gan, Y. Yang, H. Huang, J. He, and H. Zhong, “Combining the finite element method and response surface methodology for optimization of shot peening parameters,” Int. J. Fatigue, vol. 129, 2019, Art no. 105231.
G. I. Mylonas and G. Labeas, “Numerical modeling of shot peening process and corresponding products: residual stress, surface roughness and cold work prediction,” Surf. Coat. Technol., vol. 205, no. 19, pp. 4480–4494, 2011.
Y. S. Nam, Y. I. Jeong, B. C. Shin, and J. H. Byun, “Enhancing surface layer properties of an aircraft aluminum alloy by shot peening using response surface methodology,” Mater. Des., vol. 83, pp. 566–576, 2015.
S. M. Hassani-Gangaraj, K. S. Cho, H. J. L. Voigt, M. Guagliano, and C. A. Schuh, “Experimental assessment and simulation of surface nanocrystallization by severe shot peening,” Acta Materialia, vol. 97, pp. 105–115, 2015.
V. H. Nguyen, O. T. H. Nguyen, D. V. Dudina, V. V. Le, and J. S. Kim, “Crystallization kinetics of Al-Fe and Al-Fe-Y amorphous alloys produced by mechanical milling,” J. Nanomater., vol. 2016, Art no. 1909108.
L. Pawlowski, The Science and Engineering of Thermal Spray Coatings. John Wiley & Sons, 2008.
M. M. Khorramirad, M. R. Rahimipour, S. M. M. Hadavi, and K. Shirvani, “Preoxidation of bond coat in IN-738LC/NiCrAlY/LaMgAl11O19 thermal barrier coating system,” Ceramics Int., vol. 44, no. 18, pp. 22080–22091, 2018.
ASTM C633-13:2021, Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, ASTM International, 2021.
S. Vignesh, K. Shanmugam, V. Balasubramanian, and K. Sridhar, “Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings,” Defence Technol., vol. 13, no. 2, pp. 101–110, 2017.
E. Hejrani, D. Sebold, W. J. Nowak, G. Mauer, D. Naumenko, R. Vassen, and W. J. Quadakkers, “Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying,” Surf. Coat. Technol., vol. 313, pp. 191–201, 2017.
Y. F. Tao, J. Li, J. H. Lv, and L. F. Hu, “Effect of heat treatment on residual stress and wear behaviors of the TiNi/Ti2Ni based laser cladding composite coatings,” Opt. Laser Technol., vol. 97, pp. 379–389, 2017.
Z. Zhou, J. Shang, Y. Chen, X. Liang, B. Shen, and Z. Zhang, “Synchronous shot peening applied on HVOF for improvement on wear resistance of Fe-based amorphous coating,” Coatings, vol. 10, no. 2, 2020, Art no. 187.
F. M. Kadhim, M. S. Al-Din Tahir, and A. T. Naiyf, “The effect of vibrations on the mechanical properties of laminations,” Pollack Period., vol. 17, no. 1, pp. 62–65, 2022.
M. Petrik and K. Jármai, “Comparison of optimized steel frame structures,” Pollack Period., vol. 17, no. 2, pp. 109–114, 2022.