View More View Less
  • 1 Széchenyi István University Laboratory of Electromagnetic Fields, Department of Telecommunications Egyetem tér 1 H-9026 Győr Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

This paper deals with the numerical analysis of a vector hysteresis measurement system, which is under construction in the laboratory. The aim is to build up a single sheet tester with round shaped specimen. The goal of simulations is to find out the main features of the measurement system. The 3D finite element method (FEM) with tetrahedral mesh developed in the laboratory has been applied for investigations of the nonlinear eddy current field problem. The characteristic of the magnetic material has been taken into account by the isotropic vector Preisach model. The nonlinearity has been handled by the polarization method and the nonlinear system of equations has been solved by the fixed-point technique. The first results are presented in this work.

  • Gorican V., Hamler A., Hribernik B., Jesenik M., Trlep M. 2-D measurements of magnetic properties using a round RSST, 6 th International Workshop on 1&2-Dimensional Magnetic Measurement and Testing , Bad Gastein, Germany, 20–21 September, 2000, pp. 391–405.

  • Kuczmann M., Kis P., Ivanyi A., Füzi, J. Vector hysteresis measurement, Physica B , Vol. 343, 2000, pp. 390–394.

    Füzi J. , 'Vector hysteresis measurement ' (2000 ) 343 Physica B : 390 -394.

  • Kuczmann M., Ivanyi A. Vector hysteresis model based on neural network, COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering , Vol. 22, 2003, pp. 730–744.

    Ivanyi A. , 'Vector hysteresis model based on neural network ' (2003 ) 22 COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering : 730 -744.

    • Search Google Scholar
  • Schiffer A., Ivanyi A. Two-dimensional vector hysteresis model, Pollack Periodica , Vol. 1, No. 2, 2006, pp. 83–97.

    Ivanyi A. , 'Two-dimensional vector hysteresis model ' (2006 ) 1 Pollack Periodica : 83 -97.

  • Kuczmann M., Ivanyi A. Identification of isotropic and anisotropic vector Presiach model, Preisach Memorial Book (Ed. by A. Ivanyi), Akadémiai Kiadó, Budapest, 2005, pp. 89–102.

    Ivanyi A. , '', in Preisach Memorial Book , (2005 ) -.

  • Bíró O. Edge element formulations of eddy current problems, Comput. Meth. Appl. Mech. Eng. Vol. 169, 1999, pp. 391–405.

    Bíró O. , 'Edge element formulations of eddy current problems ' (1999 ) 169 Comput. Meth. Appl. Mech. Eng. : 391 -405.

    • Search Google Scholar
  • Kameari A. Calculation of transient 3D eddy current using edge-element, IEEE Trans. on Magn , Vol. 26, No. 2, 1990, pp. 466–469.

    Kameari A. , 'Calculation of transient 3D eddy current using edge-element ' (1990 ) 26 IEEE Trans. on Magn : 466 -469.

    • Search Google Scholar
  • Weis B., Bíró O. Multigrid for transient 3D eddy current analysis, COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering , Vol. 22, 2003, pp. 779–789.

    Bíró O. , 'Multigrid for transient 3D eddy current analysis ' (2003 ) 22 COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering : 779 -789.

    • Search Google Scholar
  • Cingoski V. Study on improved three-dimensional electromagnetic field computations utilizing vector edge finite elements, PhD Thesis , Hiroshima University, 1996.

  • Ragusa C., Repetto M., Anisotropic vector Preisach model and magnetic field solutions, COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering , Vol. 18, 1999, pp. 458–468.

    Repetto M. , 'Anisotropic vector Preisach model and magnetic field solutions ' (1999 ) 18 COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering : 458 -468.

    • Search Google Scholar
  • Chiampi M., Chiarabaglio D., Repetto M. Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis, IEEE Trans. on Magn. Vol. 31, 1995, pp. 4306–4311.

    Repetto M. , 'Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis ' (1995 ) 31 IEEE Trans. on Magn. : 4306 -4311.

    • Search Google Scholar
  • Hantila I.F., A method for solving stationary magnetic field in nonlinear media, Rev. Roum. Sei. Techn. Elecirotechn. Et. Energ , Vol. 20, 1975, pp. 397–407.

    Hantila I.F. , 'A method for solving stationary magnetic field in nonlinear media ' (1975 ) 20 Rev. Roum. Sei. Techn. Elecirotechn. Et. Energ : 397 -407.

    • Search Google Scholar

The author instructions template is available in MS Word.
Please, download the file from HERE.

 

MANUSCRIPT SUBMISSION

  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:

  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter


Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: ivanyi.peter@pmmik.pte.hu 

or ivanyi@pmmik.pte.hu