The study examines Cu–Zn–Al shape memory alloys, vital in aeronautics and automotive sectors. It aims to characterize their thermo-mechanical transformations induced by composition and heat treatments, focusing on how these impact mechanical properties, especially grain size refinement. Analysis covers transformation temperatures, micro-hardness, induced transformations, and mechanical tests. Results show thermoplastic martensitic transformations, with micro-hardness aiding in identifying characteristic points. The study's novelty lies in understanding how grain size refinement affects these transformations and the role of micro-hardness in precise characterization.
M. Ebrahimi, S. Attarilar, C. Gode, S. R. Kandavalli, M. Shamsborhan, and Q. Wang, “Conceptual analysis on severe plastic deformation processes of shape memory alloys: Mechanical properties and microstructure characterization,” Metals, vol. 13, no. 3, 2023, Art no. 447.
M. S. Kim, J. K. Heo, H. Rodrigue, H. T. Lee, S. Pané, M. W. Han, and S. H. Ahn, “Shape memory alloy (SMA) actuators: The role of material, form, and scaling effects,” Adv. Mater., vol. 35, no. 33, 2023, Art no. 2208517.
S. Kumar, I. A. Kumar, L. Marandi, and I. Sen, “Assessment of small-scale deformation characteristics and stress-strain behavior of NiTi based shape memory alloy using nanoindentation,” Acta Materialia, vol. 201, pp. 303–315, 2020.
J. Van Humbeeck, “Shape memory alloys with high transformation temperatures,” Mater. Res. Bull., vol. 47, no. 10, pp. 2966–2968, 2012.
H. E. Karaca, S. M. Saghaian, H. Tobe, E. Acar, B. Basaran, M. Nagasako, R. Kainuma, and R. D. Noebe, “Diffusionless phase transformation characteristics of Mn75.7Pt24.3,” J. Alloys Compd., vol. 589, pp. 412–415, 2014.
S. Miyazaki and K. Otsuka, “Development of shape memory alloys,” ISIJ Int., vol. 29, no. 5, pp. 353–377, 1989.
V. Di Cocco, F. Iacoviello, S. Natali, and V. Volpe, “Fatigue crack behavior on a Cu-Zn-Al SMA,” Frattura Ed. Integrità Strutturale, vol. 8, no. 30, pp. 454–461.
L. G. Bujoreanu, “On the influence of austenitization on the morphology of α-phase in tempered Cu-Zn-Al shape memory alloys,” Mater. Sci. Eng. A, vols 481–482, pp. 395–403, 2008.
I. Hopulele, S. Istrate, S. Stanciu, and G. Calugaru, “Comparative study of certain Cu-Zn-Al-type alloys concerning their superelastic behavior and shape memory,” J. Optoelectronics Adv. Mater., vol. 6, no. 1, pp. 277–282, 2004.
F. O. Edoziuno, L. U. Modebe, and E. E. Nnuka, “Elevated temperature corrosion resistance of Cu-Zn-Al alloy in chloride environment,” AIP Conf. Proc., vol. 2933, no. 1, 2023, Art no. 020007.
S. P. Murzin and C. Stiglbrunner, “Fabrication of smart materials using laser processing: Analysis and prospects,” Appl. Sci., vol. 14, no. 1, 2024, Art no. 85.
S. K. Aldriasawi, A. N. Hasein, A. M. Anead, and B. Mohamad, “Investigation the effect of surface treatment on the mechanical properties of coating,” Pollack Period., vol. 19, no. 2, pp. 138–145, 2024.
S. Kumari, D. Bandhu, and K. Abhishek, “Study of machinability aspects of shape memory alloys: A critical review,” MaterialsToday: Proc., vol. 44, no. Part 1, pp. 1336–1343, 2021.
S. H. Lee, J. G. Jung, S. I. Baik, D. N. Seidman, M. S. Kim, Y. K. Lee, and K. Euh, “Precipitation strengthening in naturally aged Al-Zn-Mg-Cu alloy,” Mater. Sci. Eng. A, vol. 803, 2021, Art no. 140719.
K. Dhoska, D. Lumi, A. Sulejmani, and O. Koça, “Measurement uncertainty for mechanical resistance of manufactured steel bar,” Pollack Period., vol. 17, no. 2, pp. 104–108, 2022.