View More View Less
  • 1 Széchenyi István University Laboratory of Electromagnetic Fields, Department of Telecommunications Egyetem tér 1 H-9026 Győr Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

The numerical analysis or design of an arrangement, which require electromagnetic field calculation, can be characterized by the electric and magnetic field intensities and flux densities. For determination of these field quantities in the electromagnetic field, one method is to find the solution of the partial differential equations of the field quantities under prescribed boundary conditions obtained from Maxwell’s equations. The Finite Element Method (FEM) is a possible technique to solve partial differential equations, which is based on the weak form of the weighted residual method. The paper presents some potential formulations, which can be used for solving static magnetic field problems and eddy current field problems with the help of FEM. Some examples are also presented at the second part of the paper.

  • Jackson J. D. Classical electrodynamics , J. Wiley, New York, 1962.

    Jackson J. D. , '', in Classical electrodynamics , (1962 ) -.

  • Stratton J. A. Electromagnetic theory , McGraw Hill, London, 1941.

    Stratton J. A. , '', in Electromagnetic theory , (1941 ) -.

  • Bíró O., Richter K. R. CAD in electromagnetism , Advances in Electronics and Electron Physics, vol. 82, 1991.

  • Mayergoyz I. D. Nonlinear diffusion of electromagnetic fields , Academic Press, San Diego, 1998.

    Mayergoyz I. D. , '', in Nonlinear diffusion of electromagnetic fields , (1998 ) -.

  • Jin J. The finite element method in electromagnetics , John Wiley and Sons, New York, 2002.

    Jin J. , '', in The finite element method in electromagnetics , (2002 ) -.

  • Luomi J. Finite element methods for electrical machines , Lecture Notes, Chalmers University of Technology, 1993.

  • Pepper D. W., Heinrich J. C. The finite element method , Taylor and Francis Group, New York, 2006.

    Heinrich J. C. , '', in The finite element method , (2006 ) -.

  • Schwarz H. R. Methode der finiten Elemente , B.G. Teubner, Stuttgart, 1991.

    Schwarz H. R. , '', in Methode der finiten Elemente , (1991 ) -.

  • Silvester P. P., Ferrari R. L. Finite elements for electrical engineers , Cambridge University Press, Cambridge, 1983.

    Ferrari R. L. , '', in Finite elements for electrical engineers , (1983 ) -.

  • Zienkiewicz O. C., Taylor R. The finite element method , McGraw-Hill, Maidenhead, 1991.

    Taylor R. , '', in The finite element method , (1991 ) -.

  • Simkin J., Trowbridge C. W. On the use of the total scalar potential in the numerical solution of field problems in electromagnetics, Int. J. Numer. Meth. Eng. Vol. 14, 1979, pp. 423–440.

    Trowbridge C. W. , 'On the use of the total scalar potential in the numerical solution of field problems in electromagnetics ' (1979 ) 14 Int. J. Numer. Meth. Eng. : 423 -440.

    • Search Google Scholar
  • Binns K. J., Lawrenson P. J., Trowbridge C.W. The analytical and numerical solution of electric and magnetic fields , J. Wiley, New York, 1992.

    Trowbridge C.W. , '', in The analytical and numerical solution of electric and magnetic fields , (1992 ) -.

    • Search Google Scholar
  • Coulomb J. L. Finite element three-dimensional magnetic field computation, IEEE Trans. on Magn. Vol. 17, 1981, pp. 3241–3246.

    Coulomb J. L. , 'Finite element three-dimensional magnetic field computation ' (1981 ) 17 IEEE Trans. on Magn. : 3241 -3246.

    • Search Google Scholar
  • Nakata T. 3-D electromagnetic field analysis. COMPEL, The International Journal for Ccomputation and Mathematics in Electrical and Electronic Engineering , Vol. 10, 1990, pp. 263–274.

    Nakata T. , '3-D electromagnetic field analysis. COMPEL ' (1990 ) 10 The International Journal for Ccomputation and Mathematics in Electrical and Electronic Engineering : 263 -274.

    • Search Google Scholar
  • Kameari A. Three-dimensional eddy current calculation using edge elements for magnetic vector potential, J. Applied Electromagnetic in Material , Vol. 225, 1989, pp. 225–236.

    Kameari A. , 'Three-dimensional eddy current calculation using edge elements for magnetic vector potential ' (1989 ) 225 J. Applied Electromagnetic in Material : 225 -236.

    • Search Google Scholar
  • Kameari A. Calculation of transient 3Dd eddy currents using edge elements, IEEE Trans. on Magn. Vol. 26, 1990, pp. 466–469.

    Kameari A. , 'Calculation of transient 3Dd eddy currents using edge elements ' (1990 ) 26 IEEE Trans. on Magn. : 466 -469.

    • Search Google Scholar
  • Bíró O., Preis K. On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents, IEEE Trans. on Magn. Vol. 25, 1989, pp. 3145–3159.

    Preis K. , 'On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents ' (1989 ) 25 IEEE Trans. on Magn. : 3145 -3159.

    • Search Google Scholar
  • Bíró O. Edge element formulations of eddy current problems, Comput. Meth. Appl. Mech. Eng. Vol. 169, 1999, pp. 391–405.

    Bíró O. , 'Edge element formulations of eddy current problems ' (1999 ) 169 Comput. Meth. Appl. Mech. Eng. : 391 -405.

    • Search Google Scholar
  • Bíró O., Preis K., Richter K. R. On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D magnetostatic problems, IEEE Trans. on Magn. Vol. 32, 1996, pp. 651–654.

    Richter K. R. , 'On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D magnetostatic problems ' (1996 ) 32 IEEE Trans. on Magn. : 651 -654.

    • Search Google Scholar
  • Kuczmann M., Iványi A. Neural network based hysteresis model in finite element method, Akadémiai Kiadó, Budapest, 2008 (under review).

    Iványi A. , '', in Neural network based hysteresis model in finite element method , (2008 ) -.

    • Search Google Scholar
  • Preis K., Bardi I., Bíró O., Magele C., Renhart W., Richter K. R., Vrisk G. Numerical analysis of 3d magnetostatic fields, IEEE Trans. on Magn. Vol. 27, 1991, pp. 3798–3803.

    Vrisk G. , 'Numerical analysis of 3d magnetostatic fields ' (1991 ) 27 IEEE Trans. on Magn. : 3798 -3803.

    • Search Google Scholar
  • Nakata T., Fujiwara K. Summary of results for benchmark problem 10 (steel plates around a coil), COMPEL- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering , Vol. 9, 1990, pp. 137–154.

    Fujiwara K. , 'Summary of results for benchmark problem 10 (steel plates around a coil) ' (1990 ) 9 COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering : 137 -154.

    • Search Google Scholar
  • Fujiwara K., Nakata T. Results for benchmark problem 7. COMPEL- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering , Vol. 11, 1990 pp. 335–344.

    Nakata T. , 'Results for benchmark problem 7 ' (1990 ) 11 COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering : 335 -344.

    • Search Google Scholar

The author instructions template is available in MS Word.
Please, download the file from HERE.

 

MANUSCRIPT SUBMISSION

  • Materials Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Software SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.219
  • SJR Hirsch-Index (2018): 9

Language: English

Founded in 2006, by the Pollack Mihály Faculty of Engineering, Unversity of Pécs
Publication: One volume of three issues annually
Publication Programme: 2020. Vol. 15.
Indexing and Abstracting Services:

  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter


Scientific Secretary

Miklós M. Iványi

Editorial Board

  • B. Bachmann (Hungary)
  • J. Balogh (USA)
  • R. Bancila (Romania)
  • C.C. Baniotopolous (Greece)
  • O. Biro (Austria)
  • Á. Borsos (Hungary)
  • M. Bruggi (Italy)
  • J. Bujňák (Slovakia)
  • A. Csébfalvi (Hungary)
  • M. Devetakovic (Serbia)
  • Sz. Fischer (Hungary)
  • R. Folic (Serbia)
  • J. Frankovská (Slovakia)
  • J. Füzi† (Hungary)
  • J. Gyergyák (Hungary)
  • K. Hamayer (Germany)
  • E. Helerea (Romania)
  • Á. Hutter (Hungary)
  • K. Jármai (Hungary)
  • T.J. Kajtazi (Kosovo)
  • R. Kersner (Hungary)
  • R. Kiss (Hungary)
  • I. Kistelegdi (Hungary)
  • S. Kmet (Slovakia)
  • I. Kocsis (Hungary)
  • L. Kóczy (Hungary)
  • D. Kozak (Croatia)
  • Gy.L. Kovács (Hungary)
  • B.G. Kövesdi (Hungary)
  • T. Krejči (Czech Republic)
  • J. Kruis (Czech Republic)
  • M. Kuczmann (Hungary)
  • T. Kukai (Hungary)
  • M.J. Lamela Rey (Spain)
  • J. Lógó (Hungary)
  • C. Lungoci (Romania)
  • F. Magoules (France)
  • G. Medvegy (Hungary)
  • T. Molnár (Hungary)
  • F. Orbán (Hungary)
  • Z. Orbán (Hungary)
  • D. Rachinskii (Ireland)
  • C.H. Radha (Iraq)
  • M. Repetto (Italy)
  • G. Sierpiński (Poland)
  • Z. Siménfalvi (Hungary)
  • A. Šoltész (Slovakia)
  • Zs. Szabo (Hungary)
  • M. Sysyn (Germany)
  • A. Timár (Hungary)
  • B.H.V. Topping (UK)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: ivanyi.peter@pmmik.pte.hu 

or ivanyi@pmmik.pte.hu