View More View Less
  • 1 Budapest University of Technology and Economics Department of Mechanics, Materials and Structures 1-3 Műegyetem rkp. 1521 Budapest Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

The paper considers the buckling of complete spherical shells. The main purpose could be, as a basis for real design, to find the lower critical load. Three scientists developed the idea that the buckled shape of the shell is the isometrically transformed shape of the original shell surface. Applying this idea using rotationally symmetric buckled shape the lower critical load can be calculated fairly easily for spherical shells. In reality the buckled shape has rather discrete rotation symmetry. Considering this kind of buckled shape is the main task of our research. Some preliminary results related to this buckling form will be presented here.

  • Virág Z. Determination of optimum diameter of a welded stiffened cylindrical shell, Pollack Periodica , Vol. 4,No. 1, 2009, pp. 41–52.

    Virág Z. , 'Determination of optimum diameter of a welded stiffened cylindrical shell ' (2009 ) 4 Pollack Periodica : 41 -52.

    • Search Google Scholar
  • Hegedűs I. Shell structures , (in Hungarian), Műegyetemi Kiadó, Budapest, 1998.

    Hegedűs I. , '', in Shell structures , (1998 ) -.

  • Kollár L., Dulácska E. Buckling of shells for engineers . Akadémiai Kiadó, Budapest, 1984.

    Dulácska E. , '', in Buckling of shells for engineers , (1984 ) -.

  • El Naschie M. S. Stress, stability and chaos in structural engineering: an energy approach , McGraw-Hill, London, 1990.

    Naschie M. S. , '', in Stress, stability and chaos in structural engineering: an energy approach , (1990 ) -.

  • Pogorelov A. V. Bendings of surfaces and stability of shells . American Mathematical Society, Providence, 1988

    Pogorelov A. V. , '', in Bendings of surfaces and stability of shells , (1988 ) -.

  • Bronstejn I. N., Szemengyajev K. N., Musiol G., Mühlig H. Handbook of Mathematics , (in Hungarian), Typotex Kiadó, Budapest, 2002.

    Mühlig H. , '', in Handbook of Mathematics , (2002 ) -.

  • Dulácska E. Buckling of dome shells, (in Hungarian), Építés-Építészettudomány , Vol. 19, No. 3–4, 1987, pp. 305–309.

    Dulácska E. , 'Buckling of dome shells ' (1987 ) 19 Építés-Építészettudomány : 305 -309.

    • Search Google Scholar
  • Evkin A. Y., Kalamkarov A. L. Analysis of large deflection equilibrium states of composite shells of revolution, International Journal of Solids and Structures , Vol. 38, 2001, pp. 8961–8987.

    Kalamkarov A. L. , 'Analysis of large deflection equilibrium states of composite shells of revolution ' (2001 ) 38 International Journal of Solids and Structures : 8961 -8987.

    • Search Google Scholar
  • Pauchard L., Rica S. Contact and compression of elastic spherical shells: the physics of a ‘ping-pong’ ball, Philosophical Magazine B , Vol. 78, No.2, 1998, pp. 225–233.

    Rica S. , 'Contact and compression of elastic spherical shells: the physics of a ‘ping-pong’ ball ' (1998 ) 78 Philosophical Magazine B : 225 -233.

    • Search Google Scholar
  • Wolmir A. S. Biegsame platten und schalen . VEB Verlag für Bauwesen, Berlin, 1962.

    Wolmir A. S. , '', in Biegsame platten und schalen , (1962 ) -.

All Time Past Year Past 30 Days
Abstract Views 21 21 1
Full Text Views 6 4 0
PDF Downloads 9 5 0