View More View Less
  • 1 Széchenyi István University Laboratory of Electromagnetic Fields, Department of Telecommunication Egyetem tér 1 H-9026 Győr Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

The paper presents and compares three potential formulations to solve nonlinear static magnetic field problems by applying the fixed-point technique and the Newton-Raphson scheme. Nonlinear characteristics have been handled by the polarization method in the two algorithms. The proposed combination of Newton-Raphson scheme and the polarization formulation result in a very effective nonlinear solver, because only the derivate of the characteristics, i.e. only the permeability or the reluctivity has to be used. That is why, this method can be prosperous to solve nonlinear problems with hysteresis, and it is faster than the classical fixed-point method.

  • Dlala E., Belachen A., Arkkio A. A fast fixed-point method for solving magnetic field problems in media with hysteresis, IEEE Trans. on Magn , Vol. 44, 2008, pp. 1214–1217.

    Arkkio A. , 'A fast fixed-point method for solving magnetic field problems in media with hysteresis ' (2008 ) 44 IEEE Trans. on Magn : 1214 -1217.

    • Search Google Scholar
  • Dlala E., Arkkio A. Analysis of the convergence of the fixed-point method used for solving nonlinear rotational magnetic field problems, IEEE Trans. on Magn , Vol. 44, 2008, pp. 473–478.

    Arkkio A. , 'Analysis of the convergence of the fixed-point method used for solving nonlinear rotational magnetic field problems ' (2008 ) 44 IEEE Trans. on Magn : 473 -478.

    • Search Google Scholar
  • Auserhofer S., Bíró O., Preis K. A strategy to improve the convergence of the fixed-point method for nonlinear eddy current problems, IEEE Trans. on Magn , Vol. 44, 2008, pp. 1282–1285.

    Preis K. , 'A strategy to improve the convergence of the fixed-point method for nonlinear eddy current problems ' (2008 ) 44 IEEE Trans. on Magn : 1282 -1285.

    • Search Google Scholar
  • Saitz J. Newton-Raphson method and fixed-point technique in finite element computation of magnetic field problems in media with hysteresis, IEEE Trans. on Magn , Vol. 35, 1999, pp. 1398–1401.

    Saitz J. , 'Newton-Raphson method and fixed-point technique in finite element computation of magnetic field problems in media with hysteresis ' (1999 ) 35 IEEE Trans. on Magn : 1398 -1401.

    • Search Google Scholar
  • Chiampi M., Repetto M., Chiarabaglio D. An improved technique for nonlinear magnetic problems, IEEE Trans. on Magn , Vol. 30, 1994, pp. 4332–4334.

    Chiarabaglio D. , 'An improved technique for nonlinear magnetic problems ' (1994 ) 30 IEEE Trans. on Magn : 4332 -4334.

    • Search Google Scholar
  • O’Dwyer J., O’Donnell T. Choosing the relaxation factor for the solution of nonlinear magnetic field problems by the Newton-Raphson method, IEEE Trans. Magn , Vol. 31, 1995, pp. 1484–1487.

    O’Donnell T. , 'Choosing the relaxation factor for the solution of nonlinear magnetic field problems by the Newton-Raphson method ' (1995 ) 31 IEEE Trans. Magn : 1484 -1487.

    • Search Google Scholar
  • Koh C. S., Ryu J. S., Fujiwara K. Convergence acceleration of the Newton-Raphson method using successive quadratic function approximation of residual, IEEE Trans. Magn , Vol. 42, 2006, pp. 611–614.

    Fujiwara K. , 'Convergence acceleration of the Newton-Raphson method using successive quadratic function approximation of residual ' (2006 ) 42 IEEE Trans. Magn : 611 -614.

    • Search Google Scholar
  • Fonteyn K., Belahcen A., Arkkio A. Properties of electrical steel sheets under strong mechanical stress, Pollack Periodica , Vol. 1, 2006, pp. 93–104.

    Arkkio A. , 'Properties of electrical steel sheets under strong mechanical stress ' (2006 ) 1 Pollack Periodica : 93 -104.

    • Search Google Scholar
  • Bíró O. CAD in electromagnetism, Advances in electronics and electron physics , Vol. 82, 1991, pp. 1–96.

    Bíró O. , 'CAD in electromagnetism ' (1991 ) 82 Advances in electronics and electron physics : 1 -96.

    • Search Google Scholar
  • Kuczmann M., Iványi A. The finite element method in magnetism . Akadémiai Kiadó, Budapest, 2008.

    Iványi A. , '', in The finite element method in magnetism , (2008 ) -.

  • Bíró O. Edge element formulations of eddy current problems, Computer Methods in Applied Mechanics and Engineering , Vol. 160, 1999 pp. 391–405.

    Bíró O. , 'Edge element formulations of eddy current problems ' (1999 ) 160 Computer Methods in Applied Mechanics and Engineering : 391 -405.

    • Search Google Scholar
  • Preis K., Bárdi I., Bíró O., Magele C., Renhart W., Richter K.R., Vrisk G. Numerical analysis of 3D magnetostatic fields, IEEE Trans. Magn , Vol. 27, 1991, pp. 3798–3803.

    Vrisk G. , 'Numerical analysis of 3D magnetostatic fields ' (1991 ) 27 IEEE Trans. Magn : 3798 -3803.

    • Search Google Scholar
  • Nakata T., Fujiwara K. Summary of results for benchmark problem 13 (3-D nonlinear magnetostatic model), COMPEL , Vol. 10. 1992, pp. 231–252.

    Fujiwara K. , 'Summary of results for benchmark problem 13 (3-D nonlinear magnetostatic model) ' (1992 ) 10 COMPEL : 231 -252.

    • Search Google Scholar
  • Preis K., Bárdi I., Bíró O., Magele C., Vrisk G., Richter K. R. Different finite element formulations of 3D magnetostatic fields, IEEE Trans. Magn , Vol. 28, 1992, pp. 1056–1059.

    Richter K. R. , 'Different finite element formulations of 3D magnetostatic fields ' (1992 ) 28 IEEE Trans. Magn : 1056 -1059.

    • Search Google Scholar
  • Allen N., Rodger D. Description of TEAM workshop problem 24, nonlinear time-transient rotational test rig, http://www.compumag.co.uk/problems/problem24.pdf