This paper deals with the numerical solution of a two-dimensional (2-D) magnetostatic field problem. Thereby, a finite element method (FEM) with the magnetic vector potential as field variable and a discretization with edge elements is used. For the efficient solution of the obtained matrix equation system, a geometric multigrid solver (MG) is presented which reduces the number of iterations considerably.
Bíró O. Edge element formulations of eddy current problems, Computer Methods in Applied Mechanics and Engineering , Elsevier, Amsterdam, No. 169, 1999, pp. 391–405.
Bíró O. , '', in Computer Methods in Applied Mechanics and Engineering , (1999 ) -.
Kuczmann M. Nodal and vector finite element in static and eddy current field problems, Pollack Periodica , Vol. 3, No. 2, 2008, pp. 85–96.
Kuczmann M. , 'Nodal and vector finite element in static and eddy current field problems ' (2008 ) 3 Pollack Periodica : 85 -96.
Schinnerl M., Schöberl J., Kaltenbacher M. Nested multigrid methods for the fast numerical computation of 3D magnetic fields, IEEE Trans. Magn. Vol. 36, No. 4, 2000, pp. 1557–1560.
Kaltenbacher M. , 'Nested multigrid methods for the fast numerical computation of 3D magnetic fields ' (2000 ) 36 IEEE Trans. Magn. : 1557 -1560.
Weiß B., Bíró O. Smoothing operators for edge element multigrid, IEEE Trans. Magn. Vol. 38, No. 2, 2002, pp. 397–400.
Bíró O. , 'Smoothing operators for edge element multigrid ' (2002 ) 38 IEEE Trans. Magn. : 397 -400.
Hackbusch W. Multi-grid methods and applications, Springer-Verlag, Beilin, 1985.
Hackbusch W. , '', in Multi-grid methods and applications , (1985 ) -.
Arnold D. N., Falk R. S., Winter R. Multigrid in H(div) and H(curl), Numer. Math. Vol. 85, No. 2, 2000, pp. 197–217.
Winter R. , 'Multigrid in H(div) and H(curl) ' (2000 ) 85 Numer. Math. : 197 -217.