View More View Less
  • 1 Graz University of Technology Institute for Fundamentals and Theory in Electrical Engineering, IGTE Kopernikusgasse 24 Graz Austria
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

This paper deals with the numerical solution of a two-dimensional (2-D) magnetostatic field problem. Thereby, a finite element method (FEM) with the magnetic vector potential as field variable and a discretization with edge elements is used. For the efficient solution of the obtained matrix equation system, a geometric multigrid solver (MG) is presented which reduces the number of iterations considerably.

  • Bíró O. Edge element formulations of eddy current problems, Computer Methods in Applied Mechanics and Engineering , Elsevier, Amsterdam, No. 169, 1999, pp. 391–405.

    Bíró O. , '', in Computer Methods in Applied Mechanics and Engineering , (1999 ) -.

  • Kuczmann M. Nodal and vector finite element in static and eddy current field problems, Pollack Periodica , Vol. 3, No. 2, 2008, pp. 85–96.

    Kuczmann M. , 'Nodal and vector finite element in static and eddy current field problems ' (2008 ) 3 Pollack Periodica : 85 -96.

    • Search Google Scholar
  • Schinnerl M., Schöberl J., Kaltenbacher M. Nested multigrid methods for the fast numerical computation of 3D magnetic fields, IEEE Trans. Magn. Vol. 36, No. 4, 2000, pp. 1557–1560.

    Kaltenbacher M. , 'Nested multigrid methods for the fast numerical computation of 3D magnetic fields ' (2000 ) 36 IEEE Trans. Magn. : 1557 -1560.

    • Search Google Scholar
  • Weiß B., Bíró O. Smoothing operators for edge element multigrid, IEEE Trans. Magn. Vol. 38, No. 2, 2002, pp. 397–400.

    Bíró O. , 'Smoothing operators for edge element multigrid ' (2002 ) 38 IEEE Trans. Magn. : 397 -400.

    • Search Google Scholar
  • Hackbusch W. Multi-grid methods and applications, Springer-Verlag, Beilin, 1985.

    Hackbusch W. , '', in Multi-grid methods and applications , (1985 ) -.

  • Arnold D. N., Falk R. S., Winter R. Multigrid in H(div) and H(curl), Numer. Math. Vol. 85, No. 2, 2000, pp. 197–217.

    Winter R. , 'Multigrid in H(div) and H(curl) ' (2000 ) 85 Numer. Math. : 197 -217.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 3 0 1
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 1 0 0
Nov 2020 0 5 2
Dec 2020 0 0 0