View More View Less
  • 1 Academy of Sciences of the Czech Republic Institute of Thermomechanics Dolejškova 5 182 00 Praha 8 Czech Republic
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

The minimum degree ordering is one of the most widely used algorithms to preorder a symmetric sparse matrix prior to numerical factorization. There are number of variants which try to reduce the computational complexity of the original algorithm while maintaining a reasonable ordering quality. An in-house finite element solver is used to test several minimum degree algorithms to find the most suitable configuration for the use in the Finite Element Method. The results obtained and their assessments are presented along with the minimum degree ordering algorithms overview.

  • Ueberhuber C. W. Numerical computation , Springer, Berlin, 1994.

    Ueberhuber C. W. , '', in Numerical computation , (1994 ) -.

  • Okrouhlík M., Höschl C., Nadrchal J., Plešek J., Pták S.: Mechanics of non-rigid bodies, numerical mathematics and supercomputers (in Czech), Institute of Thermo-mechanics ASCR, Prague, 1997.

    Pták S. , '', in Mechanics of non-rigid bodies, numerical mathematics and supercomputers , (1997 ) -.

    • Search Google Scholar
  • Tinney W. F., Walker J. W. Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. of the IEEE , Vol. 55, 1967, pp. 1801–1809.

    Walker J. W. , 'Direct solutions of sparse network equations by optimally ordered triangular factorization ' (1967 ) 55 Proc. of the IEEE : 1801 -1809.

    • Search Google Scholar
  • Amestoy P. R., Davis T. A., Duff I. S. An approximate minimum degree ordering algorithm, SIAM J. Matrix Analysis & Application , Vol. 17, No. 4, 1996, pp. 886–905.

    Duff I. S. , 'An approximate minimum degree ordering algorithm ' (1996 ) 17 SIAM J. Matrix Analysis & Application : 886 -905.

    • Search Google Scholar
  • George A., Liu J. W. H. The evolution of the minimum degree-ordering algorithm, SIAM Review , Vol. 31, 1989, pp. 1–19.

    Liu J. W. H. , 'The evolution of the minimum degree-ordering algorithm ' (1989 ) 31 SIAM Review : 1 -19.

    • Search Google Scholar
  • Gilbert J. R., Moler C., Schreiber R. Sparse matrices in MATLAB: design and implementation, SIAM J. Matrix Analysis & Application , Vol. 13, 1992, pp. 333–356.

    Schreiber R. , 'Sparse matrices in MATLAB: design and implementation ' (1992 ) 13 SIAM J. Matrix Analysis & Application : 333 -356.

    • Search Google Scholar
  • VAMET/Institute of Thermo-mechanics ASCR, PMD version f77.9, 2003.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 3 0
Jul 2020 1 0 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 1 0 0
Nov 2020 1 1 0
Dec 2020 0 0 0