View More View Less
  • 1 Budapest University of Technology and Economics Department of Geodesy and Surveying Műegyetem rkp 3 H-1111 Budapest Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

One of the systematic error sources in GNSS positioning is the tropospheric delay. The EGNOS augmentation system uses a specific model for taking this effect into account. This model is evaluated in the GNSS precise point positioning technique. Moreover it is compared to other tropospheric models, including the well-known Hopfield and Niell models, as well as a regression model based on Hungarian radiosonde observations. A part of the Hungarian active GNSS network is used for the test, and two study periods have been chosen for the investigations. One of them was a stormy summer period, when the status of the troposphere changes rapidly, while the other one was a calm winter period, when the troposphere contains a low amount of water vapor.

  • Beutler G., Bauersima I., Gurtner W., Rothacher M., Schildknecht T., Geiger A. Atmospheric refraction and other important biases in GPS carrier phase observations, In monograph 12, ‘Atmospheric Effects on Geodetic Space Measurements’, F. K. Brunner ( ed .), School of Geomatic Engineering, The University of New South Wales , 1989, pp. 15–44.

  • Hofmann-Wellenhof B., Lichtenegger H., Collins J. GPS theory and practice , Springer, 1998.

  • Seeber G. Satellite geodesy: foundations, methods & applications, Walter de Gruyter , 1993.

  • Brunner F. K., Welsch W. M. Effect of the troposphere on GPS measurements, GPS World , Vol. 4, No. 1, 1993, pp. 42–51.

    Welsch W. M. , 'Effect of the troposphere on GPS measurements ' (1993 ) 4 GPS World : 42 -51.

  • Bevis M., Businger S., Herring T. A., Rocken C., Anthes A., Ware R. GPS meteorology, remote sensing of atmospheric water vapor using the global positioning system, J. Geophys. Res. Vol. 97, 1992, pp. 15787–15801.

    Ware R. , 'GPS meteorology, remote sensing of atmospheric water vapor using the global positioning system ' (1992 ) 97 J. Geophys. Res. : 15787 -15801.

    • Search Google Scholar
  • Thayer G. D. An improved equation for the radio refractive index of air, Radio Sci. , Vol. 9, 1974, pp. 803–807.

    Thayer G. D. , 'An improved equation for the radio refractive index of air ' (1974 ) 9 Radio Sci. : 803 -807.

    • Search Google Scholar
  • Rozsa Sz., Dombai F., Németh P., Ablonczy D. Estimation of integrated water vapor from GPS observations, (in Hungarian) Geomatikai Közlemények , Vol. 12, No. 1, 2007, pp. 187–196.

    Ablonczy D. , 'Estimation of integrated water vapor from GPS observations ' (2007 ) 12 Geomatikai Közlemények : 187 -196.

    • Search Google Scholar
  • Rozsa Sz. Estimation of integrated water vapor (IWV) from GPS observations using local models in Hungary, (submitted for publication) in the Proceedings of IAG Scientific Assembly 2009 , Buenos Aires, 31 August–4 September, 2009.

  • Tuchband T., Rozsa Sz. Modeling tropospheric zenith delays using regression models based on surface meteorology data (submitted for publication) in the Proceedings of IAG Scientific Assembly 2009 , Buenos Aires, 31 August–4 September, 2009.

  • Emardson T. R., Derks H. J. P. On the relation between the wet delay and the integrated precipitable water vapor in the European atmosphere, Meteor. Appl. , Vol. 7, 2000, pp. 61–68.

    Derks H. J. P. , 'On the relation between the wet delay and the integrated precipitable water vapor in the European atmosphere ' (2000 ) 7 Meteor. Appl. : 61 -68.

    • Search Google Scholar
  • RTCA SC-159 Minimum operational performance standards for global positioning system/wide area augmentation system airborne equipment, RTCA/DO-229C , 2001.

  • Dach R., Hugentobler U., Fridez P., Meindl M. Bernese GPS Software, Version 5.0, Astronomical Institute, University of Bern , 2007.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 4 0
Dec 2020 0 0 0
Jan 2021 2 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0