The paper presents a rotational single sheet tester, which can be used to measure vector hysteresis characteristics using specimen with round shape. The measured hysteresis characteristics in the two orthogonal directions present the uniaxial anisotropy of the material under test, which has been handled by the Fourier expansion of the measured Everett functions. The Fourier coefficients of the unknown vector Everett function have been identified by the modification of a previously implemented algorithm. In the identification task linearly and circularly polarized measured data have been taken into account. Comparisons between measured and simulated data show acceptable results.
Cardelli E., Faba A. Vector hysteresis measurement via a single disk tester, Physica B , Vol. 372, 2006, pp. 143–146.
Faba A. , 'Vector hysteresis measurement via a single disk tester ' (2006 ) 372 Physica B : 143 -146.
Jesenik M., Gorican V., Trlep M., Hamler A., Stumberger B. Field homogeneity in a twophase round rotational single sheet tester with one and both side shields, J. of Magn. and Magn. Mat , Vol. 254–255, 2003, pp. 247–249.
Stumberger B. , 'Field homogeneity in a twophase round rotational single sheet tester with one and both side shields ' (2003 ) 254–255 J. of Magn. and Magn. Mat : 247 -249.
Makaveev D., Rauch M., De Wulf M., Melkebeek J. Accurate field strength measurement in rotational SST, J. of Magn. and Magn. Mat , Vol. 215–216, 2000, pp. 673–676.
Melkebeek J. , 'Accurate field strength measurement in rotational SST ' (2000 ) 215–216 J. of Magn. and Magn. Mat : 673 -676.
Ragusa C., Fiorillo F. A three-phase single sheet tester with digital control of flux loci based on the contraction mapping principle, J. of Magn. and Magn. Mat , Vol. 304, 2006, pp. 568–570.
Fiorillo F. , 'A three-phase single sheet tester with digital control of flux loci based on the contraction mapping principle ' (2006 ) 304 J. of Magn. and Magn. Mat : 568 -570.
Jesenik M., Gorican V., Trlep M., Hamler A., Stumberger B. Field homogenity in a 2-phase rotational SST with square sample, IEEE Trans. on Magn , Vol. 39, 2003, 1495–1498.
Stumberger B. , 'Field homogenity in a 2-phase rotational SST with square sample ' (2003 ) 39 IEEE Trans. on Magn : 1495 -1498.
Belkasim M. Identification of loss models from measurements of the magnetic properties of electrical steel sheets, MSc Thesis , 2008, http://lib.tkk.fi/Dipl/2008/urn012787.pdf (last visited 9.06.2010)
Guo Y., Zhu J. G., Zhong J., Lu H., Jin J. X. Measurement and modeling of rotational core losses of soft magnetic materials used in electrical machines, A Review, IEEE Trans. on Magn , Vol. 44, 2008, pp. 279–291.
Jin J. X. , 'Measurement and modeling of rotational core losses of soft magnetic materials used in electrical machines, A Review ' (2008 ) 44 IEEE Trans. on Magn : 279 -291.
Fonteyn K., Belahcen A., Arkkio A. Properties of electrical steel sheets under strong mechanical stress, Pollack Periodica , Vol. 1, 2006, pp. 93–104.
Arkkio A. , 'Properties of electrical steel sheets under strong mechanical stress ' (2006 ) 1 Pollack Periodica : 93 -104.
Kuczmann M. Design of 2D RRSST system by FEM with T ,Φ-Φ potential formulation, Pollack Periodica , Vol. 3, 2008, pp. 67–80.
Kuczmann M. , 'Design of 2D RRSST system by FEM with T,Φ-Φ potential formulation ' (2008 ) 3 Pollack Periodica : 67 -80.
Kuczmann M. Measurement and simulation of vector hysteresis characteristics, IEEE Trans. on Magn , Vol. 45, 2009, pp. 5188–5191.
Kuczmann M. , 'Measurement and simulation of vector hysteresis characteristics ' (2009 ) 45 IEEE Trans. on Magn : 5188 -5191.
Mayergoyz I. D. Mathematical models of hysteresis , Springer, New York, 1991.
Mayergoyz I. D. , '', in Mathematical models of hysteresis , (1991 ) -.
Della Torre E. Magnetic hystereis , IEEE Press, New York, 1999.
Torre E. , '', in Magnetic hystereis , (1999 ) -.
Ragusa C., Repetto M. Accurate analysis of magnetic devices with anisotropic vector hysteresis, Physica B , Vol. 275, 2000, pp. 92–98.
Repetto M. , 'Accurate analysis of magnetic devices with anisotropic vector hysteresis ' (2000 ) 275 Physica B : 92 -98.
Kuczmann M., Iványi A. The finite element method in magnetism , Akadémiai Kiadó, Budapest, 2008.
Iványi A. , '', in The finite element method in magnetism , (2008 ) -.
Adly A. A., Mayergoyz I. D. A new vector Preisach-type model of hysteresis, J. Appl. Phys , Vol. 73, 1993, pp. 5824–5827.
Mayergoyz I. D. , 'A new vector Preisach-type model of hysteresis ' (1993 ) 73 J. Appl. Phys : 5824 -5827.
Dlala E., Belahcen A., Katarzyna A. F., Belkasim M. Improving loss properties of the Mayergoyz vector hysteresis model, IEEE Trans. on Magn , Vol. 46, 2010, pp. 918–921.
Belkasim M. , 'Improving loss properties of the Mayergoyz vector hysteresis model ' (2010 ) 46 IEEE Trans. on Magn : 918 -921.
Fritsch F. N., Carlson R. E. Monotone piecewise cubic interpolation, SIAM J. Numerical Analysis , Vol. 17, 1980, pp. 238–246.
Carlson R. E. , 'Monotone piecewise cubic interpolation ' (1980 ) 17 SIAM J. Numerical Analysis : 238 -246.
Enokizono M. (ed.) Two-dimensional magnetic measurement and its properties , JSAEM Studies in Applied Electromagnetics, Vol. I, Oita, Japan, 1992.
Lagarias J., Reeds J. A., Wright M. H., Wright P. E. Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. of Opt. , Vol. 9, 1998, pp. 112–147.
Wright P. E. , 'Convergence properties of the Nelder-Mead simplex method in low dimensions ' (1998 ) 9 SIAM J. of Opt. : 112 -147.