View More View Less
  • 1 Technical University of Kosice Faculty of Civil Engineering Vysokoskolska 4 04200 Kosice Slovakia
  • | 2 Technical University of Cluj-Napoca Faculty of Building Services 21 Decembrie 128-130 400604 Cluj-Napoca Romania
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

The aim of the paper is to determine a methodology for calculating the needed airflow rate (including fresh air) in an occupied room, based on carbon dioxide measurement and calculation, in order to maintain the comfort indoor air quality. The calculated airflow rate should optimize the investment and the operating costs of HVAC equipment. In the work there are analyzed the calculation methods used to determine the ventilation airflow rate. It is presented the methodology for calculating the ventilation airflow rate for a room with people inside by using the measured values of carbon dioxide concentration. The connection between carbon dioxide concentration and ventilation airflow rate is verified by experimental measurements. This methodology is applicable in Slovakia because it complies with all current standards. The result obtained by using this calculation method is almost the same with that achieved from experimental measurements. To confirm the results, it is presented a case study of an office with occupants, in which the ventilation airflow rate calculation method is applied.In the article only a part from the total work is presented. The experimental measurements were carried out from 2011 to 2014. Approximately 54 measurements were covering total days or weeks. The following factors have been measured: indoor air temperature, outdoor air temperature, relative humidity of indoor air, relative humidity of outdoor air, concentration of CO2 in indoor air, concentration of CO2 in outdoor air, pressure difference and wind velocity. Ventilation by infiltration was calculated based on these factors using several methodologies. The methodology of measurement is not subject to the article. In this article only one aspect is investigated: CO2 concentration.

  • CEN 1752, Technical report CR 1752 — Ventilation for buildings: Design criteria for indoor environment, European Committee for Standardization, Brussels, 1998. Doležílková H. Micro environmental for residential buildings, PhD Thesis, (in Czech) Czech Technical University in Prague, Faculty of Civil Engineering, Prague, Czech Republic, 2007.

    '', in Ventilation for buildings: Design criteria for indoor environment , (1998 ) -.

  • DS 447, Dansk Standard, Norm for mechanical ventilation equipment, Copenhagen, Denmark, 2007.

    '', in Dansk Standard , (2007 ) -.

  • Gebauer G., Rubínová O., Horká H. Ventilation, ERA Publishing House, Brno, Czech Republic, 2005.

    H H. , '', in Ventilation , (2005 ) -.

  • Health and safety executive, Occupational exposure limits, Health and Safety Executive Books, Sudbury, United Kingdom, 2002.

    '', in Occupational exposure limits , (2002 ) -.

  • Hirš J., Gebauer G. Ventilation in examples, Brno University of Technology, Czech Republic, 2006.

    G G. , '', in Ventilation in examples , (2006 ) -.

  • Klaus D. Gebaudetechnik, Ein Leitfaden fur Architekten und Ingenieure, (A guide for architects and engineers), Oldenbourg Industrieverlag GmbH, Munchen, 2000, Germany, 2000.

    D. Gebaudetechnik K. , '', in Ein Leitfaden fur Architekten und Ingenieure , (2000 ) -.

  • Edict 391/2006, Collection of Laws, Enactment of ministry Slovak Republic from 24.05.2006 about minimum safety and health requirements for the workplace, Minister of Health, Bratislava, Slovakia, 2006.

    '', in Enactment of ministry Slovak Republic from 24.05.2006 about minimum safety and health requirements for the workplace , (2006 ) -.

  • OSHA, Occupational Safety and Health Administration, United States Department of Labor, https://www.osha.gov/index.html , last visited 7 February 2013

  • Otte L. Technical means of automation, Basic measurements in a mining environment due to security, Data transmission systems in the mine, Technical University of Ostrava, 2006–2007.

    L O. , '', in Basic measurements in a mining environment due to security, Data transmission systems in the mine , (2006 ) -.

  • Persily A. What we think we know about ventilation? Proceeding of the 10th International Conference on Indoor Air Quality and Climate ‘Indoor Air 2005’, Beijing, China, 4–9 September 2005, pp. 24–39.

    A P. , '', in Proceeding of the 10th International Conference on Indoor Air Quality and Climate ‘Indoor Air 2005’ , (2005 ) -.

  • Persily A. Evaluating building indoor air quality and ventilation with indoor carbon dioxide, American Society of Heating, Refrigeration and Air Conditioning Engineers Transactions, Atlanta, Georgia, USA, 1997, pp. 193–204.

    A P. , '', in Evaluating building indoor air quality and ventilation with indoor carbon dioxide , (1997 ) -.

  • STN EN 15251/2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics, Bratislava, Slovakia, 2007.

    '', in Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics , (2007 ) -.

  • NOAA — National Oceanic and Atmospheric Administration, Earths system research laboratory, Broadway, Boulder, Colorado, United States of America, 2011.

    '', in National Oceanic and Atmospheric Administration , (2011 ) -.

  • STN EN 13779/2007, Ventilation in non-residential buildings, General requirements for ventilation and air conditioning equipments, Bratislava, Slovakia, 2007.

    '', in Ventilation in non-residential buildings , (2007 ) -.

  • STN 730540-2/2012, Thermal performance of buildings and constructions, Bratislava, Slovakia, 20–2.

  • Edict of Slovak Ministry of Transport, Construction and regional development of the Slovak Republic, No. 364/2012, Bratislava, Slovakia, 2012.

Submit Your Manuscript
 
The author instructions template is available in MS Word.
Please, download the file from HERE.

 

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

 

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • Bálint Bachmann (Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Jeno Balogh (Department of Civil Engineering Technology, Metropolitan State University of Denver, Denver, Colorado, USA)
  • Radu Bancila (Department of Geotechnical Engineering and Terrestrial Communications Ways, Faculty of Civil Engineering and Architecture, “Politehnica” University Timisoara, Romania)
  • Charalambos C. Baniotopolous (Department of Civil Engineering, Chair of Sustainable Energy Systems, Director of Resilience Centre, School of Engineering, University of Birmingham, U.K.)
  • Oszkar Biro (Graz University of Technology, Institute of Fundamentals and Theory in Electrical Engineering, Austria)
  • Ágnes Borsos (Institute of Architecture, Department of Interior, Applied and Creative Design, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Matteo Bruggi (Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Italy)
  • Ján Bujňák (Department of Structures and Bridges, Faculty of Civil Engineering, University of Žilina, Slovakia)
  • Anikó Borbála Csébfalvi (Department of Civil Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Mirjana S. Devetaković (Faculty of Architecture, University of Belgrade, Serbia)
  • Szabolcs Fischer (Department of Transport Infrastructure and Water Resources Engineering, Faculty of Architerture, Civil Engineering and Transport Sciences Széchenyi István University, Győr, Hungary)
  • Radomir Folic (Department of Civil Engineering, Faculty of Technical Sciences, University of Novi Sad Serbia)
  • Jana Frankovská (Department of Geotechnics, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia)
  • János Gyergyák (Department of Architecture and Urban Planning, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Kay Hameyer (Chair in Electromagnetic Energy Conversion, Institute of Electrical Machines, Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Germany)
  • Elena Helerea (Dept. of Electrical Engineering and Applied Physics, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Romania)
  • Ákos Hutter (Department of Architecture and Urban Planning, Institute of Architecture, Faculty of Engineering and Information Technolgy, University of Pécs, Hungary)
  • Károly Jármai (Institute of Energy and Chemical Machinery, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary)
  • Teuta Jashari-Kajtazi (Department of Architecture, Faculty of Civil Engineering and Architecture, University of Prishtina, Kosovo)
  • Róbert Kersner (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Rita Kiss  (Biomechanical Cooperation Center, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary)
  • István Kistelegdi  (Department of Building Structures and Energy Design, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Stanislav Kmeť (President of University Science Park TECHNICOM, Technical University of Kosice, Slovakia)
  • Imre Kocsis  (Department of Basic Engineering Research, Faculty of Engineering, University of Debrecen, Hungary)
  • László T. Kóczy (Department of Information Sciences, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, University of Győr, Hungary)
  • Dražan Kozak (Faculty of Mechanical Engineering, Josip Juraj Strossmayer University of Osijek, Croatia)
  • György L. Kovács (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Balázs Géza Kövesdi (Department of Structural Engineering, Faculty of Civil Engineering, Budapest University of Engineering and Economics, Budapest, Hungary)
  • Tomáš Krejčí (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
  • Jaroslav Kruis (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
  • Miklós Kuczmann (Department of Automations, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, Széchenyi István University, Győr, Hungary)
  • Tibor Kukai (Department of Engineering Studies, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Maria Jesus Lamela-Rey (Departamento de Construcción e Ingeniería de Fabricación, University of Oviedo, Spain)
  • János Lógó  (Department of Structural Mechanics, Faculty of Civil Engineering, Budapest University of Technology and Economics, Hungary)
  • Carmen Mihaela Lungoci (Faculty of Electrical Engineering and Computer Science, Universitatea Transilvania Brasov, Romania)
  • Frédéric Magoulés (Department of Mathematics and Informatics for Complex Systems, Centrale Supélec, Université Paris Saclay, France)
  • Gabriella Medvegy (Department of Interior, Applied and Creative Design, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Tamás Molnár (Department of Visual Studies, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Ferenc Orbán (Department of Mechanical Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Zoltán Orbán (Department of Civil Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Dmitrii Rachinskii (Department of Mathematical Sciences, The University of Texas at Dallas, Texas, USA)
  • Chro Radha (Chro Ali Hamaradha) (Sulaimani Polytechnic University, Technical College of Engineering, Department of City Planning, Kurdistan Region, Iraq)
  • Maurizio Repetto (Department of Energy “Galileo Ferraris”, Politecnico di Torino, Italy)
  • Zoltán Sári (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Grzegorz Sierpiński (Department of Transport Systems and Traffic Engineering, Faculty of Transport, Silesian University of Technology, Katowice, Poland)
  • Zoltán Siménfalvi (Institute of Energy and Chemical Machinery, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary)
  • Andrej Šoltész (Department of Hydrology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia)
  • Zsolt Szabó (Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Hungary)
  • Mykola Sysyn (Chair of Planning and Design of Railway Infrastructure, Institute of Railway Systems and Public Transport, Technical University of Dresden, Germany)
  • András Timár (Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Barry H. V. Topping (Heriot-Watt University, UK, Faculty of Engineering and Information Technology, University of Pécs, Hungary)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: peter.ivanyi@mik.pte.hu 

or amalia.ivanyi@mik.pte.hu

Indexing and Abstracting Services:

  • SCOPUS

 

2020  
Scimago
H-index
11
Scimago
Journal Rank
0,257
Scimago
Quartile Score
Civil and Structural Engineering Q3
Computer Science Applications Q3
Materials Science (miscellaneous) Q3
Modeling and Simulation Q3
Software Q3
Scopus
Cite Score
340/243=1,4
Scopus
Cite Score Rank
Civil and Structural Engineering 219/318 (Q3)
Computer Science Applications 487/693 (Q3)
General Materials Science 316/455 (Q3)
Modeling and Simulation 217/290 (Q4)
Software 307/389 (Q4)
Scopus
SNIP
1,09
Scopus
Cites
321
Scopus
Documents
67
Days from submission to acceptance 136
Days from acceptance to publication 239
Acceptance
Rate
48%

 

2019  
Scimago
H-index
10
Scimago
Journal Rank
0,262
Scimago
Quartile Score
Civil and Structural Engineering Q3
Computer Science Applications Q3
Materials Science (miscellaneous) Q3
Modeling and Simulation Q3
Software Q3
Scopus
Cite Score
269/220=1,2
Scopus
Cite Score Rank
Civil and Structural Engineering 206/310 (Q3)
Computer Science Applications 445/636 (Q3)
General Materials Science 295/460 (Q3)
Modeling and Simulation 212/274 (Q4)
Software 304/373 (Q4)
Scopus
SNIP
0,933
Scopus
Cites
290
Scopus
Documents
68
Acceptance
Rate
67%

 

Pollack Periodica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 321  EUR / 402 USD
Print + online subscription: 384 EUR / 480 USD
Subscription fee 2022 Online subsscription: 327 EUR / 411 USD 321
Print + online subscription: 393 EUR / 492 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

 

Pollack Periodica
Language English
Size A4
Year of
Foundation
2006
Publication
Programme
2021 Volume 16
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-1994 (Print)
ISSN 1788-3911 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 9 0 0
May 2021 19 0 0
Jun 2021 8 0 0
Jul 2021 8 0 0
Aug 2021 6 0 0
Sep 2021 2 0 0
Oct 2021 0 0 0