View More View Less
  • 1 Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
  • | 2 Technical College of Kirkuk, Northern Technical University, 36001, Kirkuk, Iraq
  • | 3 Department of Thermohydraulic, Centre for Energy Research, POB. 49, H-1525, Budapest, Hungary
Restricted access

Purchase article

USD  $25.00

Purchase this article

USD  $387.00

Abstract

Thermodynamic efficiency is a crucial factor of a power cycle. Most of the studies indicated that efficiency increases with increasing heat source temperature, regardless of heat source type. Although this assumption generally is right, when the heat source temperature is close to the critical temperature, increasing the heat source temperature can decrease efficiency. Therefore, in some cases, the increase in the source temperature, like using improved or more collectors for a solar heat source can have a double negative effect by decreasing efficiency while increasing the installation costs. In this paper, a comparison of the CO2 subcritical cycle and the Trilateral Flash Cycle will be presented to show the potential negative effect of heat source temperature increase.

  • [1]

    E. Cayer, N. Galanis, M. Desilets, H. Nesreddine, and P. Roy, “Analysis of a carbon dioxide transcritical power cycle using a low temperature source,” Appl. Energ., vol. 86, no. 7–8, pp. 10551063, 2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [2]

    Y. T. Ge, L. Li, X. Luo, and S. A. Tassou, “Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles,” Appl. Energ., vol. 227, pp. 220230, 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3]

    L. Li, T. Ge, X. Luo, and S. A. Tassou, “Experimental investigations into power generation with low grade waste heat and R245fa Organic Rankine Cycles (ORCs),” Appl. Therm. Eng., vol. 115, pp. 815824, 2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4]

    C. Zamfirescu and I. Dincer, “Thermodynamic analysis of a novel ammonia-water trilateral Rankine cycle,” Thermochim. Acta, vol. 477, no. 1–2, pp. 715, 2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5]

    O. Al-Oran and F. Lezsovits, “Enhance thermal efficiency of parabolic trough collector using Tungsten oxide/Syltherm 800 nanofluid,” Pollack Period., vol. 15, no. 2, pp. 187198, 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    S. Mondal and S. De, “Transcritical CO2 power cycle - Effects of regenerative heating using turbine bleed gas at intermediate pressure,” Energy, vol. 87, pp. 95103, 2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7]

    C. Tonkó, “Criterion for the discharge of geothermal waste water into surface water sources in Hungary,” Pollack Period., vol. 7, no. 2, pp. 129138, 2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8]

    X. Lei, R. Peng, Z. Guo, H. Li, K. Ali, and X. Zhou, “Experimental comparison of the heat transfer of carbon dioxide under subcritical and supercritical pressures,” Int. J. Heat Mass Transf., vol. 152, Paper no. 119562, 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    H. Tuo, “Analysis of a reheat carbon dioxide transcritical power cycle using a low temperature heat source,” in ASME 2011 International Conference on Environmental Engineering and Applications, Parts A and B, Denver, Colorado, USA, November 11–17, 2011, 2011, pp. 219225.

    • Search Google Scholar
    • Export Citation
  • [10]

    H. Chen, D. Y. Goswami, and E. K. Stefanakos, “A review of thermodynamic cycles and working fluids for the conversion of low-grade heat,” Renew. Sustain. Energ. Rev., vol. 14, no. 9, pp. 30593067, 2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [11]

    P. Dutta and P. Kumar, “Supercritical carbon dioxide-based power cycles,” in Encyclopedia of Sustainable Technologies, M. A. Abraham (ed.) Elsevier, pp. 419428, 2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12]

    A. A. AlZahrani and I. Dincer, “Thermodynamic analysis of an integrated transcritical carbon dioxide power cycle for concentrated solar power systems,” Sol. Energ., vol. 170, pp. 557567, 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [13]

    J. Meng, M. Wei, P. Song, R. Tian, L. Hao, and S. Zheng, “Performance evaluation of a solar transcritical carbon dioxide Rankine cycle integrated with compressed air energy storage,” Energy Convers. Manag., vol. 215, Paper no. 112931, 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14]

    C. Wu, S. S. Wang, and J. Li, “Parametric study on the effects of a recuperator on the design and off-design performances for a CO2 transcritical power cycle for low temperature geothermal plants,” Appl. Therm. Eng., vol. 137, pp. 644658, 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15]

    J. Xia, J. Wang, G. Zhang, J. Lou, P. Zhao, and Y. Dai, “Thermo-economic analysis and comparative study of transcritical power cycles using CO2-based mixtures as working fluids,” Appl. Therm. Eng., vol. 144, pp. 3144, 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16]

    C. Wu, S. S. Wang, X. Jiang, and J. Li, “Thermodynamic analysis and performance optimization of transcritical power cycles using CO2-based binary zeotropic mixtures as working fluids for geothermal power plants,” Appl. Therm. Eng., vol. 115, pp. 292304, 2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [17]

    F. Meng, E. Wang, B. Zhang, F. Zhang, and C. Zhao, “Thermo-economic analysis of transcritical CO2 power cycle and comparison with Kalina cycle and ORC for a low-temperature heat source,” Energ. Convers. Manag., vol. 195, pp. 12951308, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [18]

    L. Pan, B. Li, W. Shi, and X. Wei, “Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy,” Appl. Energ., vol. 253, Paper no. 113608, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [19]

    L. Pan, W. Shi, X. Wei, T. Li, and B. Li, “Experimental verification of the self-condensing CO2 transcritical power cycle,” Energy, vol. 198, Paper no. 117335, 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [20]

    M. Li, J. Wang, S. Li, X. Wang, W. He, and Y. Dai, “Thermo-economic analysis and comparison of a CO2 transcritical power cycle and an organic Rankine cycle,” Geothermics, vol. 50, pp. 101111, 2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [21]

    W. Xia, Y. Huo, Y. Song, J. Han, and Y. Dai, “Off-design analysis of a CO2 Rankine cycle for the recovery of LNG cold energy with ambient air as heat source,” Energ. Convers. Manag., vol. 183, pp. 116125, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [22]

    L. L. Shao and C. L. Zhang, “Thermodynamic transition from subcritical to transcritical CO2 cycle,” Int. J. Refrig., vol. 64, pp. 123129, 2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [23]

    A. R. Imre and A. Groniewsky, “Various ways of adiabatic expansion in Organic Rankine Cycle (ORC) and in Trilateral Flash Cycle (TFC),” Zeitschrift Phys. Chem., vol. 233, no. 4, pp. 577594, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [24]

    P. Kumar and K. Srinivasan, “Carbon dioxide based power generation in renewable energy systems,” Appl. Therm. Eng., vol. 109, pp. 831840, 2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [25]

    G. Györke, U. K. Deiters, A. Groniewsky, I. Lassu, and A. R. Imre, “Novel classification of pure working fluids for organic Rankine cycle,” Energy, vol. 145, pp. 288300, 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [26]

    Y. Chen, Novel Cycles Using Carbon Dioxide as Working Fluid. Stockholm, KTH: School of Industrial Engineering and Management. 2006.

  • [27]

    NIST Chemistry Webbook .NIST Standard Reference Database, Number 69, 2018. [Online]. Available: https://webbook.nist.gov/chemistry/. Accessed: Feb. 1, 2020.

    • Search Google Scholar
    • Export Citation
  • [28]

    A. M. Ahmed, L. Kondor, and A. R. Imre, “Thermodynamic efficiency maximum of simple organic Rankine cycles,” Energies, vol. 14, no. 2, pp. 307323, 2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 134 134 88
Full Text Views 5 5 2
PDF Downloads 4 4 2