Authors:
Orest VoznyakDepartment of Heat and Gas Supply and Ventilation, Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, Lviv, Ukraine

Search for other papers by Orest Voznyak in
Current site
Google Scholar
PubMed
Close
,
Mariana KasynetsDepartment of Heat and Gas Supply and Ventilation, Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, Lviv, Ukraine

Search for other papers by Mariana Kasynets in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7686-7482
,
Nadiia SpodyniukDepartment of Heat and Power Engineering, Education and Research Institute of Energetics, Automation and Energy Efficiency, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

Search for other papers by Nadiia Spodyniuk in
Current site
Google Scholar
PubMed
Close
,
Olena SavchenkoDepartment of Heat and Gas Supply and Ventilation, Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, Lviv, Ukraine

Search for other papers by Olena Savchenko in
Current site
Google Scholar
PubMed
Close
,
Iryna SukholovaDepartment of Heat and Gas Supply and Ventilation, Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, Lviv, Ukraine

Search for other papers by Iryna Sukholova in
Current site
Google Scholar
PubMed
Close
, and
Oleksandr DovbushDepartment of Heat and Gas Supply and Ventilation, Institute of Civil Engineering and Building Systems, Lviv Polytechnic National University, Lviv, Ukraine

Search for other papers by Oleksandr Dovbush in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The article is devoted to solving of urgent problem: creation of staff work safety in the boiler room due to ensure of required conditions by natural ventilation. The aim of the work is to eliminate the main damage of the natural ventilation system of the boiler premise by using of compact air jet due to correction coefficients and updated results. Static and dynamic air pressure, difference of static pressure due to wind, aerodynamic coefficients and air balance for necessary nature ventilation of the boiler premise as well temperature correction coefficient are established. The update calculation dependencies for determining of the air static pressure and its volume flow rate in the boiler room have been obtained. Updated graph, monogram, and analytical equations for natural ventilation calculation of boiler room are presented.

  • [1]

    P. Kapalo, H. Klymenko, V. Zhelykh, and M. Adamski, “Investigation of indoor air quality in the selected Ukraine classroom, Case study,” in International Conference Current Issues of Civil and Environmental Engineering, Lviv - Košice - Rzeszów, September 11–13, 2019, Lecture Notes in Civil Engineering, Z. Blikharskyy, P. Koszelnik, and P. Mesaros, Eds, vol. 47, pp. 168–173, 2020.

    • Search Google Scholar
    • Export Citation
  • [2]

    P. Kapalo, M. Sulewska, and M. Adamski, “Examining the interdependence of the various parameters of indoor air,” in Proceedings of EcoComfort 2020, Lviv, Ukraine, September 16–18, 2020, Z. Blikharskyy, Ed., Lecture Notes in Civil Engineering, vol. 100, pp. 150–157, 2021.

    • Search Google Scholar
    • Export Citation
  • [3]

    P. Kapalo, S. Vilčeková, L. Mečiarová, F. Domnita, and M. AdamskiInfluence of indoor climate on employees in office buildings – A case study,” Sustainability, vol. 12, no. 14, 2020, Paper no. 5569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [4]

    P. Kapalo, O. Voznyak, Y. Yurkevych, K. Myroniuk, and I. Sukholova, “Ensuring comfort microclimate in the classrooms under condition of the required air exchange,” East. Eur. J. Enterprise Tech., vol. 5, no. 10, pp. 614, 2018.

    • Search Google Scholar
    • Export Citation
  • [5]

    O. Voznyak, N. Spodyniuk, I. Sukholova, O. Savchenko, M. Kasynets, and O. Datsko, “Diagnosis of three types damages to the ventilation system,” Diagnostyka, vol. 23, no. 1, 2022, Paper no. 2022102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    O. Voznyak, N. Spodyniuk, I. Sukholova, O. Dovbush, M. Kasynets, and O. Datsko, “Diagnosis of damage to the ventilation system,” Diagnostyka, vol. 22, no. 3, pp. 9199, 2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7]

    О. Voznyak, O. Savchenko, N. Spodyniuk, I. Sukholova, M. Kasynets, and O. Dovbush, “Improving of ventilation efficiency at air distribution by the swirled air jets,” Pollack Period., vol. 17, no. 1, pp. 123127, 2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8]

    O. Voznyak, N. Spodyniuk, Yu. Yurkevych, I. Sukholova, and O. Dovbush, “Enhancing efficiency of air distribution by swirled-compact air jets in the mine using the heat utilizators,” Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, vol. 5, no. 179, pp. 8994, 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    Z. Minova, P. Kapalo, and Z. Vranayova, “Effect of an interior green wall on the environment in the classroom,” in Advances and Trends in Engineering Sciences and Technologies III, Z. Poorova, P. Kapalo, and Z. Vranayova, Eds, 2019, pp. 521526.

    • Search Google Scholar
    • Export Citation
  • [10]

    Z. Poorova, M. S. Alhosni, P. Kapalo, and Z. Vranayova, “Change of temperature in the room with the living wall,” in IOP Conference Series: Materials Science and Engineering, vol. 603, no. 5, 2019, Paper no. 052063.

    • Search Google Scholar
    • Export Citation
  • [11]

    V. Zhelykh, O. Voznyak, Yu. Yurkevych, I. Sukholova, and O. Dovbush, “Enhancing of energetic and economic efficiency of air distribution by swirled-compact air jets,” Prod. Eng. Arch., vol. 27, no. 3, pp. 171175, 2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [12]

    P. Lis, A. Lis, and M. Janik, “Aspects of the analytical heat consumption monitoring in local buildings' population,” Rynek Energii, vol. 102, no. 5, pp. 6775, 2012.

    • Search Google Scholar
    • Export Citation
  • [13]

    O. Savchenko, V. Zhelykh, Y. Yurkevych, S. Shapoval, and K. Kozak, “Using vortex tube for decreasing losses of natural gas in engineering systems of gas supply,” Pollack Period., vol. 13, no. 3, pp. 241250, 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14]

    S. Shapoval, N. Spodyniuk, O. Datsko, and P. Shapoval, “Research of efficiency of solar coating in the heat supply system,” Pollack Period., vol. 17, no. 1, pp. 128132, 2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [15]

    A. Klymchuk, V. Lozhechnikov, V. Mykhailenko, and N. Lozhechnikova, “Improved mathematical model of fluid level dynamics in a drum-type steam generator as a controlled object,” J. Automation Inf. Sci., vol. 51, no. 5, pp. 6574, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [16]

    O. Voznyak, Y. Yurkevych, O. Dovbush, and Y. Serediuk, “The influence of chairs and passengers on air velocity in bus passenger compartment,” in International Conference Current Issues of Civil and Environmental Engineering, Lviv - Košice - Rzeszów, September 11–13, 2019, Lecture Notes in Civil Engineering, Z. Blikharskyy, P. Koszelnik, and P. Mesaros, Eds, vol. 47, pp. 518–525, 2020.

    • Search Google Scholar
    • Export Citation
  • [17]

    Z. Poorova and Z. Vranayova, “Humidity, air temperature, CO2 and well-being of people with and without green wall,” in Proceedings of EcoComfort 2020, Lviv, Ukraine, September 16–18, 2020, Z. Blikharskyy, Ed., Lecture Notes in Civil Engineering, vol. 100, pp. 336–346, 2021.

    • Search Google Scholar
    • Export Citation
  • [18]

    F. Vranay and Z. Vranayova, “Influence of heat source choice on building energy certification process and CO2 emissions,” in Proceedings of CEE 2019, Lviv, Ukraine, September 11–13, 2019, Z. Blikharskyy, P. Koszelnik, and P. Mesaros, Eds, Lecture Notes in Civil Engineering, vol. 47, pp. 541–548, 2020.

    • Search Google Scholar
    • Export Citation
  • [19]

    O. Voznyak, K. Myroniuk, I. Sukholova, and P. Kapalo, “The impact of air flows on the environment,” in Proceedings of CEE 2019, Lviv, Ukraine, September 11–13, 2019, Z. Blikharskyy, P. Koszelnik, and P. Mesaros, Eds, Lecture Notes in Civil Engineering, vol. 47, pp. 534–540, 2020.

    • Search Google Scholar
    • Export Citation
  • [20]

    R. Hnativ and O. Verbovskiy, “Distribution of local velocities in a circular pipe with accelerating fluid flow,” Eastern-European J. Enterprise Tech., vol. 2, no. 7, pp. 5863, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [21]

    V. Snitynskyi, P. Khirivskyi, I. Hnativ, O. Yakhno, O. Machuga, and R. Hnativ, “Visualization of river water flow in hydrodynamically active areas under different flow regimes,” J. Ecol. Eng., vol. 22, no. 9, pp. 129135, 2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [22]

    I. Tymchuk, M. Malovanyy, O. Shkvirko, V. Zhuk, A. Masikevych, and S. Synelnikov, “Innovative creation technologies for the growth substrate based on the man-made waste – Perspective way for Ukraine to ensure biological reclamation of waste dumps and quarries,” Int. J. Foresight Innovation Policy, vol. 14, nos. 2-4, pp. 248263, 2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [23]

    O. Gumen, N. Spodyniuk, M. Ulewicz, and Y. Martyn, “Research of thermal processes in industrial premises with energy-saving technologies of heating,” Diagnostyka, vol. 18, no. 2, pp. 4349, 2017.

    • Search Google Scholar
    • Export Citation
  • [24]

    A. Lis and N. Spodyniuk, “The quality of the microclimate in educational buildings subjected to thermal modernization,” E3S Web of Conferences, vol. 100, 2019, Paper no. 00048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [25]

    A. Ujma and A. Lis, “Influence of transparent partitions on selected energy indicators of the building located in central Europe,” Adv. Mater. Res., vol. 1020, pp. 579584, 2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [26]

    O. Voznyak, N. Spodyniuk, O. Savchenko, I. Sukholova, and M. Kasynets, “Еnhancing of energetic and economic efficiency of coal mines heating by infrared heaters,” Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, vol. 2, no. 182, pp. 104109, 2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [27]

    U. Marushchak, M. Sanytsky, O. Pozniak, and O. MazurakPeculiarities of nanomodified portland systems structure formation,” Chem. Chem. Technol., vol. 13, no. 4, pp. 510517, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [28]

    P. Novosad, O. Pozniak, V. Melnyk, and S. Braichenko, “Porous thermal insulation materials on organic and mineral fillers,” in International Conference Current Issues of Civil and Environmental Engineering, Lviv - Košice - Rzeszów, September 11–13, 2019, Lecture Notes in Civil Engineering, Z. Blikharskyy, P. Koszelnik, P. Mesaros, Eds, vol. 47, pp. 354–360, 2020.

    • Search Google Scholar
    • Export Citation
  • [29]

    K. Myroniuk, O. Voznyak, Yu. Yurkevych, and B. Gulay, “Technical and economic efficiency after the boiler room renewal,” in Proceedings of EcoComfort 2020, Lviv, Ukraine, September 16–18, 2020, Z. Blikharskyy, Ed., Lecture Notes in Civil Engineering, vol. 100, pp. 311–318, 2021.

    • Search Google Scholar
    • Export Citation
  • [30]

    O. Savchenko, O. Voznyak, K. Myroniuk, and O. Dovbush, “Thermal renewal of industrial buildings gas supply system,” in Proceedings of EcoComfort 2020, Lviv, Ukraine, September 16-18, 2020, Z. Blikharskyy, Ed., Lecture Notes in Civil Engineering, vol. 100, pp. 385‒392, 2021.

    • Search Google Scholar
    • Export Citation
  • [31]

    V. Petrenko, K. Dikarev, D. Volchok, and O. Kuzmenko, “Evaluation of indoor temperature for various building envelopes damaged,” E3S Web of Conferences, vol. 32, 2018, Paper no. 01019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [32]

    S. Shapoval, P. Shapoval, V. Zhelykh, O. Pona, N. Spodyniuk, B. Gulai, O. Savchenko, and K. Myroniuk, “Ecological and energy aspects of using the combined solar collectors for low-energy houses,” Chem. Chem. Technol., vol. 11, no. 4. pp. 503508, 2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [33]

    S. Shapoval, V. Zhelykh, N. Spodyniuk, O. Dzeryn, and B. Gulai, “The effectiveness to use the distribution manifold in the construction of the solar wall for the conditions of circulation,” Pollack Period., vol. 14, no. 2, pp. 143154, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [34]

    M. Adamski, “MathModelica in modeling of countercurrent heat exchangers,” in Proceedings, 8th EUROSIM Congress on Modeling and Simulation, Cardiff, UK, Sept. 10–13, 2013, pp. 439442.

    • Search Google Scholar
    • Export Citation
  • [35]

    R. Khmil, R. Tytarenko, Y. Blikharskyy, and P. Vegera, “The probabilistic calculation model of RC beams, strengthened by RC jacket,” in Proceedings of EcoComfort 2020, Lviv, Ukraine, September 16-18, 2020, Z. Blikharskyy, Ed., Lecture Notes in Civil Engineering, vol. 100, pp. 182–191, 2021.

    • Search Google Scholar
    • Export Citation
  • [36]

    V. Labay, O. Savchenko, V. Zhelykh, and K. Kozak, “Mathematical modeling of the heating process in a vortex tube at the gas distribution stations,” Math. Model. Comput., vol. 6, no. 2, pp. 311319, 2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [37]

    A. Yefimov and T. Potanina, “Application of interval analysis for improving reliability of estimation of hardness value spread for nuclear structural materials,” Probl. At. Sci. Technologythis, vol. 125, no. 1, pp. 206210, 2020.

    • Search Google Scholar
    • Export Citation
  • [38]

    E. K. E. Mjabber, A. Khamlichi, and A. E. Hajjaji, “Nonlinear control of wind turbine in above rated wind speed region,” Pollack Period., vol. 17, no. 1, pp. 7277, 2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
Submit Your Manuscript
 
The author instructions template is available in MS Word.
Please, download the file from HERE.

 

Senior editors

Editor(s)-in-Chief: Iványi, Amália

Editor(s)-in-Chief: Iványi, Péter

 

Scientific Secretary

Miklós M. Iványi

Editorial Board

  • Bálint Bachmann (Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Jeno Balogh (Department of Civil Engineering Technology, Metropolitan State University of Denver, Denver, Colorado, USA)
  • Radu Bancila (Department of Geotechnical Engineering and Terrestrial Communications Ways, Faculty of Civil Engineering and Architecture, “Politehnica” University Timisoara, Romania)
  • Charalambos C. Baniotopolous (Department of Civil Engineering, Chair of Sustainable Energy Systems, Director of Resilience Centre, School of Engineering, University of Birmingham, U.K.)
  • Oszkar Biro (Graz University of Technology, Institute of Fundamentals and Theory in Electrical Engineering, Austria)
  • Ágnes Borsos (Institute of Architecture, Department of Interior, Applied and Creative Design, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Matteo Bruggi (Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Italy)
  • Petra Bujňáková (Department of Structures and Bridges, Faculty of Civil Engineering, University of Žilina, Slovakia)
  • Anikó Borbála Csébfalvi (Department of Civil Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Mirjana S. Devetaković (Faculty of Architecture, University of Belgrade, Serbia)
  • Szabolcs Fischer (Department of Transport Infrastructure and Water Resources Engineering, Faculty of Architerture, Civil Engineering and Transport Sciences Széchenyi István University, Győr, Hungary)
  • Radomir Folic (Department of Civil Engineering, Faculty of Technical Sciences, University of Novi Sad Serbia)
  • Jana Frankovská (Department of Geotechnics, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia)
  • János Gyergyák (Department of Architecture and Urban Planning, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Kay Hameyer (Chair in Electromagnetic Energy Conversion, Institute of Electrical Machines, Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Germany)
  • Elena Helerea (Dept. of Electrical Engineering and Applied Physics, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Romania)
  • Ákos Hutter (Department of Architecture and Urban Planning, Institute of Architecture, Faculty of Engineering and Information Technolgy, University of Pécs, Hungary)
  • Károly Jármai (Institute of Energy and Chemical Machinery, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary)
  • Teuta Jashari-Kajtazi (Department of Architecture, Faculty of Civil Engineering and Architecture, University of Prishtina, Kosovo)
  • Róbert Kersner (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Rita Kiss  (Biomechanical Cooperation Center, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary)
  • István Kistelegdi  (Department of Building Structures and Energy Design, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Stanislav Kmeť (President of University Science Park TECHNICOM, Technical University of Kosice, Slovakia)
  • Imre Kocsis  (Department of Basic Engineering Research, Faculty of Engineering, University of Debrecen, Hungary)
  • László T. Kóczy (Department of Information Sciences, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, University of Győr, Hungary)
  • Dražan Kozak (Faculty of Mechanical Engineering, Josip Juraj Strossmayer University of Osijek, Croatia)
  • György L. Kovács (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Balázs Géza Kövesdi (Department of Structural Engineering, Faculty of Civil Engineering, Budapest University of Engineering and Economics, Budapest, Hungary)
  • Tomáš Krejčí (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
  • Jaroslav Kruis (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic)
  • Miklós Kuczmann (Department of Automations, Faculty of Mechanical Engineering, Informatics and Electrical Engineering, Széchenyi István University, Győr, Hungary)
  • Tibor Kukai (Department of Engineering Studies, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Maria Jesus Lamela-Rey (Departamento de Construcción e Ingeniería de Fabricación, University of Oviedo, Spain)
  • János Lógó  (Department of Structural Mechanics, Faculty of Civil Engineering, Budapest University of Technology and Economics, Hungary)
  • Carmen Mihaela Lungoci (Faculty of Electrical Engineering and Computer Science, Universitatea Transilvania Brasov, Romania)
  • Frédéric Magoulés (Department of Mathematics and Informatics for Complex Systems, Centrale Supélec, Université Paris Saclay, France)
  • Gabriella Medvegy (Department of Interior, Applied and Creative Design, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Tamás Molnár (Department of Visual Studies, Institute of Architecture, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Ferenc Orbán (Department of Mechanical Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Zoltán Orbán (Department of Civil Engineering, Institute of Smart Technology and Engineering, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Dmitrii Rachinskii (Department of Mathematical Sciences, The University of Texas at Dallas, Texas, USA)
  • Chro Radha (Chro Ali Hamaradha) (Sulaimani Polytechnic University, Technical College of Engineering, Department of City Planning, Kurdistan Region, Iraq)
  • Maurizio Repetto (Department of Energy “Galileo Ferraris”, Politecnico di Torino, Italy)
  • Zoltán Sári (Department of Technical Informatics, Institute of Information and Electrical Technology, Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Grzegorz Sierpiński (Department of Transport Systems and Traffic Engineering, Faculty of Transport, Silesian University of Technology, Katowice, Poland)
  • Zoltán Siménfalvi (Institute of Energy and Chemical Machinery, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary)
  • Andrej Šoltész (Department of Hydrology, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia)
  • Zsolt Szabó (Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Hungary)
  • Mykola Sysyn (Chair of Planning and Design of Railway Infrastructure, Institute of Railway Systems and Public Transport, Technical University of Dresden, Germany)
  • András Timár (Faculty of Engineering and Information Technology, University of Pécs, Hungary)
  • Barry H. V. Topping (Heriot-Watt University, UK, Faculty of Engineering and Information Technology, University of Pécs, Hungary)

POLLACK PERIODICA
Pollack Mihály Faculty of Engineering
Institute: University of Pécs
Address: Boszorkány utca 2. H–7624 Pécs, Hungary
Phone/Fax: (36 72) 503 650

E-mail: peter.ivanyi@mik.pte.hu 

or amalia.ivanyi@mik.pte.hu

Indexing and Abstracting Services:

  • SCOPUS
  • CABELLS Journalytics

 

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
12
Scimago
Journal Rank
0,26
Scimago Quartile Score Civil and Structural Engineering (Q3)
Materials Science (miscellaneous) (Q3)
Computer Science Applications (Q4)
Modeling and Simulation (Q4)
Software (Q4)
Scopus  
Scopus
Cite Score
1,5
Scopus
CIte Score Rank
Civil and Structural Engineering 232/326 (Q3)
Computer Science Applications 536/747 (Q3)
General Materials Science 329/455 (Q3)
Modeling and Simulation 228/303 (Q4)
Software 326/398 (Q4)
Scopus
SNIP
0,613

2020  
Scimago
H-index
11
Scimago
Journal Rank
0,257
Scimago
Quartile Score
Civil and Structural Engineering Q3
Computer Science Applications Q3
Materials Science (miscellaneous) Q3
Modeling and Simulation Q3
Software Q3
Scopus
Cite Score
340/243=1,4
Scopus
Cite Score Rank
Civil and Structural Engineering 219/318 (Q3)
Computer Science Applications 487/693 (Q3)
General Materials Science 316/455 (Q3)
Modeling and Simulation 217/290 (Q4)
Software 307/389 (Q4)
Scopus
SNIP
1,09
Scopus
Cites
321
Scopus
Documents
67
Days from submission to acceptance 136
Days from acceptance to publication 239
Acceptance
Rate
48%

 

2019  
Scimago
H-index
10
Scimago
Journal Rank
0,262
Scimago
Quartile Score
Civil and Structural Engineering Q3
Computer Science Applications Q3
Materials Science (miscellaneous) Q3
Modeling and Simulation Q3
Software Q3
Scopus
Cite Score
269/220=1,2
Scopus
Cite Score Rank
Civil and Structural Engineering 206/310 (Q3)
Computer Science Applications 445/636 (Q3)
General Materials Science 295/460 (Q3)
Modeling and Simulation 212/274 (Q4)
Software 304/373 (Q4)
Scopus
SNIP
0,933
Scopus
Cites
290
Scopus
Documents
68
Acceptance
Rate
67%

 

Pollack Periodica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 336 EUR / 411 USD
Print + online subscription: 405 EUR / 492 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

 

Pollack Periodica
Language English
Size A4
Year of
Foundation
2006
Volumes
per Year
1
Issues
per Year
3
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1788-1994 (Print)
ISSN 1788-3911 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2022 0 0 0
Sep 2022 0 0 0
Oct 2022 0 0 0
Nov 2022 0 0 0
Dec 2022 151 1 1
Jan 2023 74 0 1
Feb 2023 0 0 0