View More View Less
  • 1 Kaáli Intézet Győr
  • | 2 Debreceni Egyetem, Klinikai Központ Szülészeti és Nőgyógyászati Klinika Debrecen
  • | 3 Central Queensland University Rockhampton Ausztrália
Restricted access

A humán embriológia és a genomika területén bekövetkezett változások sorozata új feltételeket teremtett a preimplantációs genetikai diagnosztika és szűrés gyakorlatban történő széles körű alkalmazásához, drámai változást eredményezve az asszisztált reprodukcióban. A szerzők összefoglaló közleményükben rámutatnak arra, hogy a humán genom projekt befejezése óta a szekvenálás és a bioinformatika területén bekövetkezett gyors fejlődés eredményeként exponenciálisan megnőtt azoknak a betegségeknek a száma, amelyeknek a genetikai hátterét teljes mértékben sikerült felderíteni. A humán embriók tenyésztésének módszerei ugyancsak radikális változásokon mentek keresztül, lehetővé téve a késői transzfert, a vitrifikáció pedig a biztonságos embrióhűtést. Ezeknek köszönhetően a blastocysta biopsziát követően az új genomikai módszerekkel változatlan terhességi és szülési ráták mellett bonyolultabb genetikai analízisek elvégzésére nyílt lehetőség, sőt az aneuploid embriók szelekciójával számos tanulmány szerint ezek a ráták tovább javíthatóak. Az embriókról nyerhető új információk mennyisége és minősége számos etikai és technikai kérdést is felvet, amelyek megválaszolása nagy esetszámú prospektív tanulmányok eredményei alapján egyre sürgetőbbé válik. Orv. Hetil., 2014, 155(35), 1375–1382.

  • Palini, S., Galluzzi, L., De Stefani, S., et al.: Genomic DNA in human blastocoele fluid. Reprod. Biomed. Online, 2013, 26(6), 603–610.

  • Handyside, A. H., Kontogianni, E. H., Hardy, K., et al.: Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature, 1990, 344(6268), 768–770.

  • Handyside, A. H., Lesko, J. G., Tarín, J. J., et al.: Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis. N. Engl. J. Med., 1992, 327(13), 905–909.

  • Handyside, A. H., Xu, K.: Preimplantation genetic diagnosis comes of age. Semin. Reprod. Med., 2012, 30(4), 255–258.

  • Griffin, D. K., Handyside, A. H., Penketh, R. J., et al.: Fluorescent in-situ hybridization to interphase nuclei of human preimplantation embryos with X and Y chromosome specific probes. Hum. Reprod. 1991, 6(1), 101–105.

  • Verlinsky, Y., Rechitsky, S., Evsikov, S., et al.: Preconception and preimplantation diagnosis for cystic fibrosis. Prenat. Diagn., 1992, 12(2), 103–110.

  • Munné, S.: Preimplantation genetic diagnosis for aneuploidy and translocations using array comparative genomic hybridization. Curr. Genomics, 2012, 13(6), 463–470.

  • Fragouli, E., Katz-Jaffe, M., Alfarawati, S., et al.: Comprehensive chromosome screening of polar bodies and blastocysts from couples experiencing repeated implantation failure. Fertil. Steril., 2010, 94(3), 875–887.

  • Schoolcraft, W. B., Fragouli, E., Stevens J., et al.: Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil. Steril., 2010, 94(5), 1700–1706.

  • Scott, R. T. Jr., Ferry, K., Su, J., et al.: Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil. Steril., 2012, 97(4), 870–875.

  • Yang, Z., Liu, J., Collins, G. S., et al.: Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol. Cytogenet., 2012, 5(1), 24.

  • Schoolcraft, W. B., Treff, N. R., Stevens, J. M., et al.: Live birth outcome with trophectoderm biopsy, blastocyst vitrification, and single-nucleotide polymorphism microarray-based comprehensive chromosome screening in infertile patients. Fertil. Steril., 2011, 96(3), 638–640.

  • Treff, N. R., Tao, X., Ferry, K. M., et al.: Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil. Steril., 2012, 97(4), 819–824.

  • Yin, X., Tan, K., Vajta, G., et al.: Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol. Reprod., 2013, 88(3), 69.

  • Martín, J., Cervero, A., Mir, P., et al.: The impact of next-generation sequencing technology on preimplantation genetic diagnosis and screening. Fertil. Steril., 2013, 99(4), 1054–1061.e3.

  • Blake, D. A., Farquhar, C. M., Johnson, N., et al.: Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst. Rev., 2007, (4), CD002118.

  • Blastocyst culture and transfer in clinical-assisted reproduction: a committee opinion. Fertil. Steril., 2013, 99(3), 667–672.

  • McArthur, S. J., Leigh, D., Marshall, J. T., et al.: Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil. Steril., 2005, 84(6), 1628–1636.

  • Scott, R. T. Jr., Upham, K. M., Forman, E. J., et al.: Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil. Steril., 2013, 100(3), 624–630.

  • Xu, K., Montag, M.: New perspectives on embryo biopsy: not how, but when and why? Semin. Reprod. Med., 2012, 30(4), 259–266.

  • Baart, E. B., Van Opstal, D., Los, F. J.: Fluorescence in situ hybridization analysis of two blastomeres from day 3 frozen-thawed embryos followed by analysis of the remaining embryo on day 5. Hum. Reprod., 2004, 19(3), 685–893.

  • Sandalinas, M., Sadowy, S., Alikani, M., et al.: Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum. Reprod., 2001, 16(9), 1954–1958.

  • Feng, G. X., Zhang, B., Shu, J. H., et al.: Effects of artificial shrinkage of blastocoeles before vitrification on pregnancy outcome. Zhonghua Fu Chan Ke Za Zhi, 2010, 45(11), 838–842.

  • Iwayama, H., Hochi, S., Yamashita, M.: In vitro and in vivo viability of human blastocysts collapsed by laser pulse or osmotic shock prior to vitrification. J. Assist. Reprod. Genet., 2011, 28(4), 355–361.

  • Vanderzwalmen, P., Bertin, G., Debauche, C., et al.: Vitrification of human blastocysts with the Hemi-Straw carrier: application of assisted hatching after thawing. Hum. Reprod., 2003, 18(7), 1504–1511.

  • Staessen, C., Platteau, P., van Assche, E., et al.: Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum. Reprod., 2004, 19(12), 2849–2858.

  • Twisk, M., Mastenbroek, S., Hoek, A., et al.: No beneficial effect of preimplantation genetic screening in women of advanced maternal age with a high risk for embryonic aneuploidy. Hum. Reprod., 2008, 23(12), 2813–2817.

  • Hardarson, T., Hanson, C., Lundin, K., et al.: Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum. Reprod., 2008, 23(12), 2806–2812.

  • Lathi, R. B., Massie, J. A., Gilani, M., et al.: Outcomes of trophectoderm biopsy on cryopreserved blastocysts: a case series. Reprod. Biomed. Online, 2012, 25(5), 504–507.

  • Schoolcraft, W. B., Katz-Jaffe, M. G.: Comprehensive chromosome screening of trophectoderm with vitrification facilitates elective single-embryo transfer for infertile women with advanced maternal age. Fertil. Steril., 2013, 100(3), 615–619.

  • Keltz, M. D., Vega, M., Sirota, I., et al.: Preimplantation genetic screening (PGS) with comparative genomic hybridization (CGH) following day 3 single cell blastomere biopsy markedly improves IVF outcomes while lowering multiple pregnancies and miscarriages. J. Assist. Reprod. Genet., 2013, 30(10), 1333–1339.

  • Scott, R. T., Tao, X., Taylor, D., et al.: A prospective randomized controlled trial demonstrating significantly increased clinical pregnancy rates following 24 chromosome aneuploidy screening: biopsy and analysis on day 5 with fresh transfer. Fertil. Steril., 2010, 94(4 Suppl.), S2.

  • Forman, E. J., Hong, K. H., Franasiak, J. M., et al.: Obstetrical and neonatal outcomes from the BEST Trial: single embryo transfer with aneuploidy screening improves outcomes after in vitro fertilization without compromising delivery rates. Am. J. Obstet. Gynecol., 2014, 210(2), 157.e1–157.e6.

  • Scott, R. T. Jr., Upham, K. M., Forman, E. J., et al.: Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil. Steril., 2013, 100(3), 697–703.

  • Gleicher, N., Barad, D. H.: A review of, and commentary on, the ongoing second clinical introduction of preimplantation genetic screening (PGS) to routine IVF practice. J. Assist. Reprod. Genet., 2012, 29(11), 1159–1166.

  • Meldrum, D. R.: Introduction: Preimplantation genetic screening is alive and very well. Fertil. Steril., 2013, 100(3), 593–594.

  • Beukers, F., van der Heide, M., Middelburg, K. J., et al.: Morphologic abnormalities in 2-year-old children born after in vitro fertilization/intracytoplasmic sperm injection with preimplantation genetic screening: follow-up of a randomized controlled trial. Fertil. Steril., 2013, 99(2), 408–413.

  • Desmyttere, S., De Rycke, M., Staessen, C., et al.: Neonatal follow-up of 995 consecutively born children after embryo biopsy for PGD. Hum. Reprod., 2012, 27(1), 288–293.

  • Desmyttere, S., Bonduelle, M., Nekkebroeck, J., et al.: Growth and health outcome of 102 2-year-old children conceived after preimplantation genetic diagnosis or screening. Early Hum. Dev., 2009, 85(12), 755–759.

  • Franasiak, J. M., Forman, E. J., Hong, K. H., et al.: The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril., 2014, 101(3), 656–663.e1.

  • Harton, G. L., Munne, S., Surrey, M., et al.: Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil. Steril., 2013, 100(6), 1695–1703.

  • Preimplantation genetic testing: a Practice Committee opinion. Fertil. Steril., 2008, 90(5 Suppl.), S136–S143.

  • Harper, J., Sermon, K., Geraedts, J., et al.: What next for preimplantation genetic screening? Hum. Reprod., 2008, 23(3), 478–480.

  • Harper, J., Coonen, E., De Rycke, M., et al.: What next for preimplantation genetic screening (PGS)? A position statement from the ESHRE PGD Consortium Steering Committee. Hum. Reprod., 2010, 25(4), 821–823.

  • Harper, J. C., Geraedts, J., Borry, P., et al.: Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology. Eur. J. Hum. Genet., 2013, 21(Suppl. 2), S1–S21.

  • Hens, K., Dondorp, W., Handyside, A. H., et al.: Dynamics and ethics of comprehensive preimplantation genetic testing: a review of the challenges. Hum. Reprod. Update, 2013, 19(4), 366–375.

  • Hens, K., Dondorp, W., de Wert, G.: Embryos without secrets: an expert panel study on comprehensive embryo testing and the responsibility of the clinician. Eur. J. Med. Genet., 2013, 56(2), 67–71.

  • Pribenszky, C., Mátyás, S., Kovács, P., et al.: Pregnancy achieved by transfer of a single blastocyst selected by time-lapse monitoring. Reprod. Biomed. Online, 2010, 21(4), 533–536.

  • Chen, A. A., Tan, L., Suraj, V., et al.: Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertil. Steril., 2013, 99(4), 1035–1043.

  • Campbell, A., Fishel, S., Bowman, N., et al.: Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod. Biomed. Online, 2013, 27(2), 140–146.

  • Ottolini, C., Rienzi, L., Capalbo, A.: A cautionary note against embryo aneuploidy risk assessment using time-lapse imaging. Reprod. Biomed. Online, 2014, 28(3), 273–275.

  • Swain, J. E.: Could time-lapse embryo imaging reduce the need for biopsy and PGS? J. Assist. Reprod. Genet., 2013, 30(8), 1081–1090.

  • Lau, T. K., Chen, F., Pan, X., et al.: Noninvasive prenatal diagnosis of common fetal chromosomal aneuploidies by maternal plasma DNA sequencing. J. Matern. Fetal Neonatal Med., 2012, 25(8), 1370–1374.

  • Li, J., Yin, X. Y., Tan, K., et al.: Clinical application of massively parallel sequencing on chromosomal abnormalities detection of human blastocysts. Hum. Reprod., 2013, 28(Suppl. 1), i26.

All Time Past Year Past 30 Days
Abstract Views 102 101 9
Full Text Views 13 0 0
PDF Downloads 3 1 0