A bal kamrának alapvető szerepe van a szervezet vérkeringésének fenntartásában, ezért annak noninvazív vizsgálata esszenciális fontosságú. A jelen összefoglaló közlemény célja a jelenleg elérhető, a bal kamra vizsgálatában használatos echokardiográfiás módszerek klinikai jelentőségének bemutatása, kiemelve a legkorszerűbbnek tartott háromdimenziós (és) speckle-tracking eljárások fontosságát. Orv. Hetil., 2015, 156(43), 1723–1740.
Szentágothai, J., Réthelyi, M.: Functional anatomy. Vol. II. [Funkcionális anatómia. II. kötet.] Medicina Könyvkiadó, Budapest, 1989. [Hungarian]
Lang, R. M., Badano, L. P., Mor-Avi, V., et al.: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr., 2015, 28(1), 1–39.e14.
Nemes, A., Kalapos, A., Domsik, P., et al.: Left ventricular rotation and twist of the heart. Let’s reveal some concepts! [A szív bal kamrai rotációja és csavarodása. Tisztázzunk néhány fogalmat!] Orv. Hetil., 2012, 153(39), 1547–1551. [Hungarian]
Vardas, P. E., Auricchio, A., Blanc, J. J., et al.: Guidelines for cardiac pacing and cardiac resynchronisation therapy. The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Eur. Heart J., 2007, 28(18), 2256–2295.
Feigenbaum, H. (ed.): Echocardiography. 5th ed. Lea & Febiger, Philadelphia, 1994.
Teichholz, L. E., Kreulen, T., Herman, M. V., et al.: Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence or absence of asynergy. Am. J. Cardiol., 1976, 37(1), 7–11.
Møller, J. E., Hillis, G. S., Oh, J. K., et al.: Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction. Am. Heart J., 2006, 151(2), 419–425.
Curtis, J. P., Sokol, S. I., Wang, Y., et al.: The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J. Am. Coll. Cardiol., 2003, 42(4), 736–742.
Wandt, B., Bojö, L., Tolagen, K., et al.: Echocardiographic assessment of ejection fraction in left ventricular hypertrophy. Heart, 1999, 82(2), 192–198.
Hu, K., Liu, D., Herrmann, S., et al.: Clinical implication of mitral annular plane systolic excursion for patients with cardiovascular disease. Eur. Heart J. Cardiovasc. Imaging, 2013, 14(3), 205–212.
Ahmadpour, H., Shah, A. A., Allen, J. W., et al.: Mitral E point septal separation: a reliable index of left ventricular performance in coronary artery disease. Am. Heart J., 1983, 106(1 Pt 1), 21–28.
Foppa, M., Duncan, B. B., Rohde, L. E., et al.: Echocardiography-based left ventricular mass estimation. How should we define hypertrophy? Cardiovasc. Ultrasound, 2005, 3, 17.
Chung, E. S., Leon, A. R., Tavazzi, L., et al.: Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation, 2008, 117(20), 2608–2616.
Mulvagh, S. L., Rakowski, H., Vannan, M. A., et al.: American Society of Echocardiography Consensus Statement on the Clinical Applications of Ultrasonic Contrast Agents in Echocardiography. J. Am. Soc. Echocardiogr., 2008, 21(11), 1179–1201.
Jose, J., Nayak, P. R., Krishnaswami, S.: Eccentricity index of the left ventricle 2-D echo study. Indian Heart J., 1987, 39(4), 293–297.
Cerqueira, M. D., Weissman, N. J., Dilsizian, V., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation, 2002, 105(4), 539–542.
Nagueh, S. F., Appleton, C. P., Gillebert, T. C., et al.: Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur. J. Echocardiogr., 2009, 10(2), 165–193.
Tei, C., Ling, L. H., Hodge, D. O., et al.: New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function – a study in normals and dilated cardiomyopathy. J. Cardiol., 1995, 26(6), 357–366.
Bargiggia, G. S., Bertucci, C., Recusani, F., et al.: A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography: Validation studies at cardiac catheterization. Circulation, 1989, 80(5), 1287–1292.
Bauer, F., Jones, M., Shiota, T., et al.: Left ventricular outflow tract mean systolic acceleration as a surrogate for the slope of the left ventricular end-systolic pressure-volume relationship. J. Am. Coll. Cardiol., 2002, 40(7), 1320–1327.
Arias-Godinez, J. A., Guadalajara-Boo, J. F., Patel, A. R., et al.: Function and mechanics of the left ventricle: from tissue Doppler imaging to three dimensional speckle tracking. Arch. Cardiol. Mex., 2011, 81(2), 114–125.
Opdahl, A., Helle-Valle, T., Skulstad, H. et al.: Strain, strain rate, torsion and twist: echocardiographic evaluation. Curr. Cardiol. Rep., 2015, 17(3), 568.
Notomi, Y., Setser, R. M., Shiota, T., et al.: Assessment of left ventricular torsional deformation by Doppler tissue imaging. Validation study with tagged magnetic resonance imaging. Circulation, 2005, 111(9), 1141–1147.
Voigt, J. U., Pedrizzetti, G., Lysyansky, P., et al.: Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging, 2015, 16(1), 1–11.
Tayyareci, Y., Yildirimturk, O., Yurdakul, S., et al.: Clinical implications of velocity vector imaging-based two dimensional strain imaging for the evaluation of left ventricular systolic functions. Minerva Cardioangiol., 2010, 58(3), 399–407.
Kalaycioğlu, E., Gökdeniz, T., Aykan, A. Ç., et al.: The influence of dipper/nondipper blood pressure patterns on global left ventricular systolic function in hypertensive diabetic patients: a speckle tracking study. Blood Press. Monit., 2014, 19(5), 263–270.
Lange, S. A., Jung, J., Jaeck, A., et al.: Subclinical myocardial impairment occured in septal and anterior LV wall segments after anthracycline-embedded chemotherapy and did not worsen during adjuvant trastuzumab treatment in breast cancer patients. Cardiovasc. Toxicol. (in press)
Nesser, H. J., Winter, S.: Speckle tracking in the evaluation of left ventricular dyssynchrony. Echocardiography, 2009, 26(3), 324–336.
Franke, A., Kühl, H. P.: Second-generation real-time 3D echocardiography: a revolutionary new technology. Medica Mundi, 2003, 47(2), 34–40.
Nemes, A., Geleijnse, M. L., Soliman, O. I., et al.: Real-time 3-dimensional echocardiography – can there be one more dimension? [Real-time 3 dimenziós echokardiográfia – lehet egy dimenzióval több?] Orv. Hetil., 2007, 148(52), 2451–2460. [Hungarian]
Krenning, B. J., Kirschbaum, S. W., Soliman, O. I., et al.: Comparison of contrast agent-enhanced versus non-contrast agent-enhanced real-time three-dimensional echocardiography for analysis of left ventricular systolic function. Am. J. Cardiol., 2007, 100(9), 1485–1489.
Soliman, O. I., Krenning, B. J., Geleijnse, M. L., et al.: Quantification of left ventricular volumes and function in patients with cardiomyopathies by real-time three-dimensional echocardiography: a head-to-head comparison between two different semiautomated endocardial border detection algorithms. J. Am. Soc. Echocardiogr., 2007, 20(9), 1042–1049.
Soliman, O. I., Krenning, B. J., Geleijnse, M. L., et al.: A comparison between QLAB and TomTec full volume reconstruction for real time three-dimensional echocardiographic quantification of left ventricular volumes. Echocardiography, 2007, 24(9), 967–974.
Yap, S. C., van Geuns, R. J., Nemes, A., et al.: Rapid and accurate measurement of LV mass by biplane real-time 3D echocardiography in patients with concentric LV hypertrophy: comparison to CMR. Eur. J. Echocardiogr., 2008, 9(2), 255–260.
Nemes, A., Geleijnse, M. L., Soliman, O. I., et al.: New method for evaluation of left ventricular dyssynchrony and of the success of cardiac resynchronization therapy: real-time 3-dimensional echocardiography. [Új módszer a bal kamrai diszszinkrónia és a reszinkronizációs terápia sikerességének megítélésére: a real-time háromdimenziós echokardiográfia.] Orv. Hetil., 2009, 150(39), 1834–1838. [Hungarian]
Nemes, A., Kalapos, A., Domsik, P., et al.: Three-dimensional speckle-tracking echocardiography – a further step in the non-invasive three-dimensional cardiac imaging. [Háromdimenziós speckle-tracking echokardiográfia – egy újabb lépés a noninvazív háromdimenziós kardiális képalkotásban.] Orv. Hetil., 2012, 153(40), 1570–1577. [Hungarian]
Nesser, H. J., Mor-Avi, V., Gorissen, W., et al.: Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur. Heart J., 2009, 30(13), 1565–1573.
Kleijn, S. A., Brouwer, W. P., Aly, M. F., et al.: Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function. Eur. Heart J. Cardiovasc. Imaging, 2012, 13(10), 834–839.
Kleijn, S. A., Aly, M. F., Terwee, C. B., et al.: Reliability of left ventricular volumes and function measurements using three-dimensional speckle tracking echocardiography. Eur. Heart J. Cardiovasc. Imaging, 2012, 13(2), 159–168.
Saito, K., Okura, H., Watanabe, N., et al.: Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J. Am. Soc. Echocardiogr., 2009, 22(9), 1025–1030.
Ammar, K. A., Paterick, T. E., Khanderia, B. K., et al.: Myocardial mechanics: understanding and applying three-dimensional speckle tracking echocardiography in clinical practice. Echocardiography, 2012, 29(7), 861–872.
Wang, Q., Gao, Y., Tan, K., et al.: Assessment of left ventricular function by three-dimensional speckle-tracking echocardiography in well-treated type 2 diabetes patients with or without hypertension. J. Clin. UItrasound, 2015, 43(8), 502–511.
Kleijn, S. A., Aly, M. F., Terwee, C. B., et al.: Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain. J. Am. Soc. Echocardiogr., 2011, 24(3), 314–321.
Wang, Q., Zhang, C., Huang, D., et al.: Evaluation of myocardial infarction size with three-dimensional speckle tracking echocardiography: a comparison with single photon emission computed tomography. Int. J. Cardiovasc. Imaging (in press).
Zhou, Z., Ashraf, M., Hu, D., et al.: Three-dimensional speckle-tracking imaging for left ventricular rotation measurement: an in vitro validation study. J. Ultrasound Med., 2010, 29(6), 903–909.
Ashraf, M., Myronenko, A., Nguyen, T., et al.: Defining left ventricular apex-to-base twist mechanics computed from high-resolution 3D echocardiography: validation against sonomicrometry. JACC Cardiovasc. Imaging, 2010, 3(3), 227–234.
Andrade, J., Cortez, L. D., Campos, O., et al.: Left ventricular twist: comparison between two- and three-dimensional speckle-tracking echocardiography in healthy volunteers. Eur. J. Echocardiogr., 2011, 12(1), 76–79.
Ashraf, M., Zhou, Z., Nguyen, T., et al.: Apex to base left ventricular twist mechanics computed from high frame rate two-dimensional and three-dimensional echocardiography: a comparison study. J. Am. Soc. Echocardiogr., 2012, 25(1), 121–128.
Tavakoli, V., Sahba, N.: Assessment of age-related changes in left ventricular twist by 3-dimensional speckle-tracking echocardiography. J. Ultrasound Med., 2013, 32(8), 1435–1441.
Urbano-Moral, J. A., Arias Godinez, J. A., Maron, M. S., et al.: Left ventricular twist mechanics in hypertrophic cardiomyopathy assessed by three-dimensional speckle tracking echocardiography. Am. J. Cardiol., 2011, 108(12), 1788–1795.
Kalapos, A., Domsik, P., Forster, T., et al.: Comparative evaluation of left ventricular function by two-dimensional echocardiography and three-dimensional speckle-tracking echocardiography in noncompaction cardiomyopathy. Result from the MAGYAR-Path Study. [A kétdimenziós echokardiográfia és a háromdimenziós speckle-tracking echokardiográfia összehasonlító vizsgálata a balkamra-funkció megítélésében noncompaction cardiomyopathiában. Eredmények a MAGYAR-Path Tanulmányból.] Orv. Hetil., 2013, 154(34), 1352–1359. [Hungarian]
Kang, Y., Sun, M. M., Cui, J., et al.: Three-dimensional speckle tracking echocardiography for the assessment of left ventricular function and mechanical dyssynchrony. Acta Cardiol., 2012, 67(4), 423–430.
Tanaka, H., Hara, H., Saba, S., et al.: Usefulness of three-dimensional speckle tracking strain to quantify dyssynchrony and the site of latest mechanical activation. Am. J. Cardiol., 2010, 105(2), 235–242.
Li, C. H., Carreras, F., Leta, R., et al.: Mechanical left ventricular dyssynchrony detection by endocardium displacement analysis with 3D speckle tracking technology. Int. J. Cardiovasc. Imaging, 2010, 26(8), 867–870.
Tatsumi, K., Tanaka, H., Tsuji, T., et al.: Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy. Cardiovasc. Ultrasound, 2011, 9, 11.
Matsumoto, K., Tanaka, H., Tatsumi, K., et al.: Left ventricular dyssynchrony using three-dimensional speckle-tracking imaging as a determinant of torsional mechanics in patients with idiopathic dilated cardiomyopathy. Am. J. Cardiol., 2012, 109(8), 1197–1205.