A reaktívoxigén-származékok fokozott termelődése fontos szerepet játszik a szívelégtelenség patogenezisében. Azonban mint jelátviteli molekula, a szív fiziológiás folyamatainak összehangolásában is részt vesz. Jelen közleményben a szerzők összefoglalják, hogy a reaktívoxigén-származékok endogén produkciója milyen szerepet tölt be a szív pumpafunkciójának szabályozásában fiziológiás viszonyok között. Orv. Hetil., 2015, 156(47), 1912–1915.
Giordano, F. J.: Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Invest., 2005, 115(3), 500–508.
Sag, C. M., Santos, C. X., Shah, A. M.: Redox regulation of cardiac hypertrophy. J. Mol. Cell. Cardiol., 2014, 73, 103–111.
Xu, K. Y., Zweier, J. L., Becker, L. C.: Hydroxyl radical inhibits sarcoplasmic reticulum Ca2+-ATPase function by direct attack on the ATP binding site. Circ. Res., 1997, 80(1), 76–81.
Gill, J. S., McKenna, W. J., Camm, A. J.: Free radicals irreversibly decrease Ca2+ currents in isolated guinea-pig ventricular myocytes. Eur. J. Pharmacol., 1995, 292(3–4), 337–340.
Hertelendi, Z., Tóth, A., Borbély, A., et al.: Oxidation of myofilament protein sulfhydryl groups reduces the contractile force and its Ca2+ sensitivity in human cardiomyocytes. Antioxid. Redox Signal., 2008, 10(7), 1175–1184.
Canton, M., Menazza, S., Sheeran, F. L., et al.: Oxidation of myofibrillar proteins in human heart failure. J. Am. Coll. Cardiol., 2011, 57(3), 300–309.
Sumandea, M. P., Steinberg, S. F.: Redox signaling and cardiac sarcomeres. J. Biol. Chem., 2011, 286(12), 9921–9927.
Prosser, B. L., Ward, C. W., Lederer, W. J.: X-ROS signaling: rapid mechano-chemo transduction in heart. Science, 2011, 333(6048), 1440–1445.
Heinzel, F. R., Luo, Y., Dodoni, G., et al.: Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes. Cardiovasc. Res., 2006, 71(2), 374–382.
Saitoh, S., Zhang, C., Tune, J. D., et al.: Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler. Thromb. Vasc. Biol., 2006, 26(12), 2614–2621.
Perjés, A., Kubin, A. M., Kónyi, A., et al.: Physiological regulation of cardiac contractility by endogenous reactive oxygen species. Acta Physiol. (Oxf.), 2012, 205(1), 26–40.
Xiao, R. P., Zhu, W., Zheng, M., et al.: Subtype-specific α1- and β-adrenoceptor signaling in the heart. Trends Pharmacol. Sci., 2006, 27(6), 330–337.
Mak, S., Newton, G. E.: Vitamin C augments the inotropic response to dobutamine in humans with normal left ventricular function. Circulation, 2001, 103(6), 826–830.
Kubin, A. M., Skoumal, R., Tavi, P., et al.: Role of reactive oxygen species in the regulation of cardiac contractility. J. Mol. Cell. Cardiol., 2011, 50(5), 884–893.
Andersson, D. C., Fauconnier, J., Yamada, T., et al.: Mitochondrial production of reactive oxygen species contributes to the beta-adrenergic stimulation of mouse cardiomycytes. J. Physiol., 2011, 589(7), 1791–1801.
Humphries, K. M., Pennypacker, J. K., Taylor, S. S.: Redox regulation of cAMP-dependent protein kinase signaling: kinase versus phosphatase inactivation. J. Biol. Chem., 2007, 282(30), 22072–22079.
Szokodi, I., Kerkelä, R., Kubin, A. M., et al.: Functionally opposing roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the regulation of cardiac contractility. Circulation, 2008, 118(16), 1651–1658.
Cingolani, H. E., Villa-Abrille, M. C., Cornelli, M., et al.: The positive inotropic effect of angiotensin II: role of endothelin-1 and reactive oxygen species. Hypertension, 2006, 47(4), 727–734.
De Giusti, V. C., Correa, M. V., Villa-Abrille, M. C., et al.: The positive inotropic effect of endothelin-1 is mediated by mitochondrial reactive oxygen species. Life Sci., 2008, 83(7–8), 264–271.
Murphy, E., Steenbergen, C.: Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev., 2008, 88(2), 581–609.
Garlid, K. D., Puddu, P. E., Pasdois, P., et al.: Inhibition of cardiac contractility by 5-hydroxydecanoate and tetraphenylphosphonium ion: a possible role of mitoKATP in response to inotropic stress. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(1), H152–H160.
Clerk, A., Sugden, P. H.: Ras: the stress and the strain. J. Mol. Cell. Cardiol., 2006, 41(4), 595–600.
Yusuf, S., Dagenais, G., Pogue, J., et al.: Vitamin E supplementation and cardiovascular events in high risk patients. N. Engl. J. Med., 2000, 342(3), 154–160.
Lonn, E., Bosch, J., Yusuf, S., et al.: Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA, 2005, 293(11), 1338–1347.
Keith, M. E., Jeejeebhoy, K. N., Langer, A., et al.: A controlled clinical trial of vitamin E supplementation in patients with congestive heart failure. Am. J. Clin. Nutr., 2001, 73(2), 219–224.
Hare, J. M., Mangal, B., Brown, J., et al.: Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J. Am. Coll. Cardiol., 2008, 51(24), 2301–2309.
Mortensen, S. A., Rosenfeldt, F., Kumar, A., et al.: The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. J. Am. Coll. Cardiol. Heart Fail., 2014, 2(6), 641–649.
Watson, P. S., Scalia, G. M., Galbraith, A., et al.: Lack of effect of coenzyme Q on left ventricular function in patients with congestive heart failure. J. Am. Coll. Cardiol., 1999, 33(6), 1549–1552.
Palomeque, J., Sapia, L., Hajjar, R. J., et al.: Angiotensin II-induced negative inotropy in rat ventricular myocytes: role of reactive oxygen species and p38 MAPK. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(1), H96–H106.
Dong, F., Zhang, X., Ren, J.: Leptin regulates cardiomyocyte contractile function through endothelin-1 receptor–NADPH oxidase pathway. Hypertension, 2006, 47(2), 222–229.
Li, S., Li, X., Zheng, H., et al.: Pro-oxidant effect of transforming growth factor-beta1 mediates contractile dysfunction in rat ventricular myocytes. Cardiovasc. Res., 2008, 77(1), 107–117.
Sugamura, K., Keaney, J. F. Jr.: Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med., 2011, 51(5), 978–992.