A Nemzetközi Sugárvédelmi Bizottság becslése szerint 100 mSv sugárexpozíció a rosszindulatú daganatos megbetegedések kockázatát 0,5%-kal emeli. A lineáris nincs küszöb modell központi feltételezése az, hogy alacsony dózisú ionizáló sugárzás esetén a carcinogenesis beindítása az „egy találat akció” során, vagyis akár egy elektron által okozott egy vagy több dezoxiribonukleinsav szál törése útján is megtörténhet. Függetlenül attól, hogy milyen kis dózisról van szó, a sugárexpozíció fokozza a rosszindulatú daganat kialakulásának kockázatát. Az Egyesült Államokban végzett összes komputertomográfiás vizsgálat megközelítőleg egyharmadában egyrészt bizonyított klinikai racionalitás nélkül indikálják a vizsgálatot, azaz olyankor, amikor a nem röntgensugárt alkalmazó képalkotók ugyanolyan szenzitivitással és specificitással használhatóak lennének, másrészt feleslegesen ismétlik a vizsgálatokat. A technikai fejlesztések csökkentették a sugárterhelés veszélyérzetét, pedig annak kockázatára és kumulatív jellegére mindig gondolni kell. Az onkológiai betegek követésében az ionizáló sugárzással járó rákkockázat minimalizálása szükséges. A nem ionizáló sugárral dolgozó diagnosztikus eszközök széles körű elérhetőségére van szükség (például teljes test diffúziósúlyozott mágneses rezonanciás vizsgálat, pozitronemissziós tomográfia/mágneses rezonanciás vizsgálat). Orv. Hetil., 2016, 157(39), 1538–1545.
Burke, L. M., Bashir, M. R., Neville, A. M., et al.: Current opinions on medical radiation: a survey of oncologists regarding radiation exposure and dose reduction in oncology patients. J. Am. Coll. Radiol., 2014, 11(5), 490–495.
United Nations Scientific Committee on the Effects of Atomic Radiation: Sources and effects of ionizing radiation. UNSCEAR 2008 Report. United Nations, New York, 2010.
National Council on Radiation Protection and Measurements: Ionizing radiation exposure of the population of the United States. Bethesda, 2009.
Berrington de González, A., Darby, S.: Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet, 2004, 363(9406), 345–351.
Hall, E. J., Brenner, D. J.: Cancer risks from diagnostic radiology: the impact of new epidemiological data. Br. J. Radiol., 2012, 85(1020), e1316–e1317.
Wrixon, A. D.: New ICRP recommendations. J. Radiol. Prot., 2008, 28(2), 161–168.
Sobue, T.: Scientific approach to radiation-induced cancer risk. Fukushima J. Med. Sci., 2011, 57(2), 90–92.
Ljungman, M.: Physical factors. In: DeVita, V. T. Jr., Lawrence, T. S., Rosenberg, S. A. (eds.): Cancer: Principles & Practice of Oncology, 9th ed. Lippincott Williams & Wilkins, Philadelphia, 2009.
Seong, K. M., Seo, S., Lee, D., et al.: Is the linear no-threshold dose-response paradigm still necessary for the assessment of health effects of low dose radiation? J. Korean Med. Sci., 2016, 31(Suppl. 1), S10–S23.
Shah, D. J., Sachs, R. K., Wilson, D. J.: Radiation-induced cancer: a modern view. Br. J. Radiol., 2012, 85(1020), e1166–e1173.
Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, NRC: Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. National Academies Press, Washington, 2006.
Preston, D. L., Shimizu, Y., Pierce, D. A., et al.: Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res., 2003, 160(4), 381–407
Pierce, D. A., Preston, D. L.: Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat. Res., 2000, 154(2), 178–186.
Preston, D. L., Ron, E., Tokuoka, S., et al.: Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res., 2007, 168(1), 1–64.
Thompson, D. E., Mabuchi, K., Ron, E., et al.: Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat. Res., 1994, 137(Suppl. 2), S17–S67.
Williams, D.: Cancer after nuclear fallout: lessons from the Chernobyl accident. Nat. Rev. Cancer, 2002, 2(7), 543–549.
Cardis, E., Vrijheid, M., Blettner, M., et al.: Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. BMJ, 2005, 331(7508), 77.
Cardis, E., Vrijheid, M., Blettner, M., et al.: The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat. Res., 2007, 167(4), 396–416.
Leuraud, K., Richardson, D. B., Cardis, E., et al.: Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol., 2015, 2(7), e276–e281.
Radiation dose in X-ray and CT exams. Radiological Society of North America (RSNA), American College of Radiology (ACR). http://www.RadiologyInfo.org
Bottollier-Depois, J. F., Chau, Q., Bouisset, P., et al.: Assessing exposure to cosmic radiation during long-haul flights. Radiat. Res., 2000, 153(5 Pt. 1), 526–532.
Winters, T. H., Di Franza, J. R.: Radioactivity in cigarette smoking. N. Engl. J. Med., 1982, 306(6), 364–365.
Roguin, A., Nair, P.: Radiation during cardiovascular imaging. Br. J. Cardiol., 2007, 14(5), 289–292.
Huang, B., Law, M. W., Khong, P. L.: Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology, 2009, 251(1), 166–174.
Brenner, D. J., Doll, R., Goodhead, D. T., et al.: Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. Natl. Acad. Sci. U.S.A., 2003, 100(24), 13761–13766.
Fujii, K., Aoyama, T., Yamauchi-Kawaura, C., et al.: Radiation dose evaluation in 64-slice CT examinations with adult and paediatric anthropomorphic phantoms. Br. J. Radiol., 2009, 82(984), 1010–1018.
Food and Drug Administraion: What are the radiation risk from CT? http://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/MedicalImaging/MedicalX-Rays/ucm115329.htm
Oh, J. S., Koea, J. B.: Radiation risks associated with serial imaging in colorectal cancer patients: should we worry? World J. Gastroenterol., 2014, 20(1), 100–109.
Brenner, D. J., Hall, E. J.: Computed tomography – an increasing source of radiation exposure. N. Engl. J. Med., 2007, 357(22), 2277–2284.
Zhang, Y., Chen, Y., Huang, H., et al.: Diagnostic radiography exposure increases the risk for thyroid microcarcinoma: a population-based case-control study. Eur. J. Cancer Prev., 2015, 24(5), 439–446.
Knüsli, C., Walter, M.: Update – health risks induced by ionizing radiation from diagnostic imaging. Ther. Umsch., 2013, 70(12), 746–751.
Pearce, M. S., Salotti, J. A., Little, M. P., et al.: Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet, 2012, 380(9840), 499–505.
Chodick, G., Ronckers, C. M., Shalev, V., et al.: Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children. Isr. Med. Assoc. J., 2007, 9(8), 584–587.
Sodickson, A., Baeyens, P. F., Andriole, K. P., et al.: Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology, 2009, 251(1),175–184.
Meer, A. B., Basu, P. A., Baker, L. C., et al.: Exposure to ionizing radiation and estimate of secondary cancers in the era of high-speed CT scanning: projections from the Medicare population. J. Am. Coll. Radiol., 2012, 9(4), 245–250.
Berrington de González, A., Mahesh, M., Kim, K. P., et al.: Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch. Intern. Med., 2009, 169(22), 2071–2077.
Spratt, D. E., Wu, A. J., Adeseye, V., et al.: Recurrence patterns and second primary lung cancers after stereotactic body radiation therapy for early-stage non-small-cell lung cancer: implications for surveillance. Clin. Lung Cancer, 2016, 17(3), 177–183.e2.
Lee, Y. J., Chung, Y. E., Lim, J. S., et al.: Cumulative radiation exposure during follow-up after curative surgery for gastric cancer. Korean J. Radiol., 2012, 13(2), 144–151.
Sullivan, C. J., Murphy, K. P., McLaughlin, P. D., et al.: Radiation exposure from diagnostic imaging in young patients with testicular cancer. Eur. Radiol., 2015, 25(4), 1005–1013.
Graña, L., Calzado, A., Hernández, P., et al.: Role of computed tomography on large B-cell non-Hodgkin’s lymphoma follow-up and the risk of radiation-induced neoplasm: A retrospective cohort study. Eur. J. Radiol., 2016, 85(3), 673–679.
Riva, E., Oliver, C., Pérez, M. C., et al.: Current imaging follow-up of non-Hodgkin lymphoma exposes patients to significant radiation but does not detect asymptomatic relapses. Leuk. Lymphoma, 2016, 57(6), 1363–1366.
Guttikonda, R., Herts, B. R., Dong, F., et al.: Estimated radiation exposure and cancer risk from CT and PET/CT scans in patients with lymphoma. Eur. J. Radiol., 2014, 83(6), 1011–1015.
Matkevich, E. I., Sinitsyn, V. E., Ivanov, I. V.: Health prediction indices obtained with low-dose computer tomography scans. Aviakosm. Ekolog. Med., 2015, 49(6), 61–67. [Russian]
Ono, K., Hiraoka, T., Ono, A., et al.: Low-dose CT scan screening for lung cancer: comparison of images and radiation doses between low-dose CT and follow-up standard diagnostic CT. SpringerPlus, 2013, 2, 393.
Bae, S., Kim, M. J., Yoon, C. S., et al.: Effects of adaptive statistical iterative reconstruction on radiation dose reduction and diagnostic accuracy of pediatric abdominal CT. Pediatr. Radiol., 2014, 44(12), 1541–1547.
Wolach, O., Bernstine, H., Edel, Y., et al.: Limited positron emission tomography-computed tomography for restaging of lymphoma: a strategy for reducing radiation exposure among patients with early-stage curable lymphoma. Acta Haematol., 2014, 131(4), 239–244.
Kim, H. S., Lee, K. S., Ohno, Y., et al.: PET/CT versus MRI for diagnosis, staging, and follow-up of lung cancer. J. Magn. Reson. Imaging, 2015, 42(2), 247–260.
Kwee, T. C., Vermoolen, M. A., Akkerman, E. A., et al.: Whole-body MRI, including diffusion-weighted imaging, for staging lymphoma: comparison with CT in a prospective multicenter study. J. Magn. Reson. Imaging, 2014, 40(1), 26–36.
Klenk, C., Gawande, R., Uslu, L., et al: Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol., 2014, 15(3), 275–285.