A májbetegségekkel és májműtétekkel kapcsolatos morbiditás és mortalitás fő oka a beáramlási akadály következtében kialakult ischaemiás-reperfúziós károsodás. A stresszfehérjék családjába tartozó hősokkfehérjék a sejthomeosztázis fenntartása és az immunrendszer szabályozása mellett a máj regenerálódásában is bizonyítottan fontos szerepet játszanak. Humán szervezetben az ischaemiás-reperfúziós károsodás alapvető indikátorai, valamint a máj működésére és regenerációjára is hatással vannak. A dolgozat elsődleges célja a hősokkfehérjék potenciális szerepének ismertetése diagnosztikus markerként májbetegségekben, valamint terápiás célpontként kritikus állapotokban. Először a hősokkfehérjék endogén rendszerként való alapvető szerepére koncentrál, ugyanis ez összefüggést mutat a májkárosodással. Ez megmagyarázza a hősokkfehérje-70 hatását a máj megbetegedéseire és az ischaemia-reperfúzióra. Ezt követően vizsgálja a hősokkfehérjék lehetséges diagnosztikus szerepét, végül potenciális terápiás eszközként való használatát tekinti át. Orv. Hetil., 2016, 157(42), 1659–1666.
Ritossa, F.: Discovery of the heat shock response. Cell Stress Chaperones, 1996, 1(2), 97–98.
Benjamin, I. J., McMillan, D. R.: Stress (heat shock) proteins. Molecular chaperones in cardiovascular biology and disease. Circ. Res., 1998, 83(2), 117–132.
Morimoto, R. I., Tissieres, A., Georgopoulos, C.: Progress and perspectives on the biology of heat shock proteins and molecular chaperones. In: The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, 1994.
Ritossa, F.: A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 1962, 18(12), 571–573.
Stricker, E. M., Hainsworth, F. R.: Evaporative cooling in the rat: effects of dehydration. Can. J. Physiol. Pharmacol., 1970, 48(1), 18–27.
Hightower, L. E., Hendershot, L. M.: Molecular chaperones and the heat shock response at Cold Spring Harbor. Cell Stress Chaperones, 1997, 2(1), 1–11.
Clavien, P. A., Harvey, P. R., Strasberg, S. M.: Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation, 1992, 53(5), 957–978.
Tadros, T., Traber, D. L., Herndon, D. N.: Hepatic blood flow and oxygen consumption after burn and sepsis. J. Trauma, 2000, 49(1), 101–108.
Peitzman, A. B., Billiar, T. R., Harbrecht, B. G., et al.: Hemorrhagic shock. Curr. Probl. Surg., 1995, 32(11), 925–1002.
Müller, M. J., Vollmar, B., Friedl, H. P., et al.: Xanthine oxidase and superoxide radicals in portal triad crossclamping-induced microvascular reperfusion injury of the liver. Free Radic. Biol. Med., 1996, 21(2), 189–197.
Jaeschke, H., Farhood, A., Smith, C. W.: Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J., 1990, 4(15), 3355–3359.
Serracino-Inglott, F., Habib, N. A., Mathie, R. T.: Hepatic ischemia-reperfusion injury. Am. J. Surg., 2001, 181(2), 160–166.
Glantzounis, G. K., Yang, W., Koti, R. S., et al.: The role of thiols in liver ischemia-reperfusion injury. Curr. Pharm. Des., 2006, 12(23), 2891–2901.
Kuboki, S., Schuster, R., Blanchard, J., et al.: Role of heat shock protein 70 in hepatic ischemia-reperfusion injury in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(4), G1141–G1149.
Hartl, F. U.: Molecular chaperones in cellular protein folding. Nature, 1996, 381(6583), 571– 579.
Reilly, N., Poylin, V., Menconi, M., et al.: Probiotics potentiate IL-6 production in IL-1beta-treated Caco-2 cells through a heat shock-dependent mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. Rev., 2007, 293(3), R1169–R1179.
Carlson, R. M., Vavricka, S. R., Eloranta, J. J., et al.: fMLP induces Hsp27 expression, attenuates NF-kappaB activation, and confers intestinal epithelial cell protection. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(4), G1070–G1078.
Kültz, D.: Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol., 2005, 67, 225–257.
Bardwell, J. C., Craig, E. A.: Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. U.S.A., 1984, 81, 848–852.
Wu, B. J., Kingston, R. E., Morimoto, R. I.: Human HSP70 promoter contains at least two distinct regulatory domains. Proc. Natl. Acad. Sci. U.S.A., 1986, 83(3), 629–633.
Kiang, J. G., Tsokos, G. C.: Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther., 1998, 80(2), 183–201.
Hosoi, N., Itoh, H., Koyama, K., et al.: Overexpression of the heat shock protein 70 confers protection against oxidative injury in HEPG2 cells. Transplant. Proc., 2002, 34(7), 2647–2649.
Ikeyama, S., Kusumoto, K., Miyake, H., et al.: A non-toxic heat shock protein 70 inducer, geranylgeranylacetone, suppresses apoptosis of cultured rat hepatocytes caused by hydrogen peroxide and ethanol. J. Hepatol., 2001, 35(1), 53–61.
Beere, H. M., Wolf, B. B., Cain, K., et al.: Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol., 2000, 2(8), 469–475.
Ding, X. Z., Smallridge, R. C., Galloway, R. J., et al.: Increases in HSF1 translocation and synthesis in human epidermoid A-431 cells: role of protein kinase C and [Ca2+]i. J. Investig. Med., 1996, 44(4), 144–153.
Ghosh, S., May, M. J., Kopp, E. B.: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol., 1998, 16, 225–260.
Asea, A., Rehli, M., Kabingu, E., et al.: Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem., 2002, 277(17), 15028–15034.
Kimoto, S., Yamamoto, Y., Yamagami, K., et al.: The augmentative effect of repeated heat shock preconditioning on the production of heat shock protein 72 and on ischemic tolerance in rat liver tissue. Int. J. Hyperthermia, 2000, 16(3), 247–261.
Housby, J. N., Cahill, C. M., Chu, B., et al.: Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines and induce HSP70 in human monocytes. Cytokine, 1999, 11(5), 347–358.
Shimabukuro, T., Yamamoto, Y., Kume, M., et al.: Induction of heat shock response: effect on the rat liver with carbon tetrachloride-induced fibrosis from ischemia-reperfusion injury. World J. Surg., 1998, 22(5), 464–468.
Welch, W. J.: Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol. Rev., 1992, 72(4), 1063–1081.
Ciocca, D. R., Oesterreich, S., Chamness, G. C., et al.: Biological and clinical implications of heat shock protein 27000 (Hsp 27): a review. J. Natl. Cancer Inst., 1993, 85(19), 1558–1570.
Landry, J., Chrétien, P., Lambert, J., et al.: Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell Biol., 1989, 109(1), 7–15.
Lavoie, J. N., Lambert, H., Hickey, E., et al.: Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol. Cell. Biol., 1995, 15(1), 505–516.
Arrigo, A. P.: Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol. Chem., 1998, 379(1), 19–26.
Broughan, T. A., Jin, G. F., Papaconstantinou, J.: Early gene response to hepatic ischemia/reperfusion. J. Surg. Res., 1996, 63(1), 98–104.
Boeri, D., Dondero, F., Storace, D., et al.: Heat-shock protein 70 favours human liver recovery from ischaemia-reperfusion. Eur. J. Clin. Invest., 2003, 33(6), 500–504.
Schoeniger, L. O., Andreoni, K. A., Ott, G. R., et al.: Induction of heat-shock gene expression in postischemic pig liver depends on superoxide generation. Gastroenterology, 1994, 106(1), 177–184.
Liu, L., Jeppsson, B., Bengmark, S.: Bacterial translocation into portal blood from the gut during portal triad occlusion. Dig. Surg., 1992, 9(2), 95–101.
Kuboki, S., Okaya, T., Schuster, R., et al.: Hepatocyte NF-κB activation is hepatoprotective during ischemia/reperfusion injury and is augmented by ischemic hypothermia. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(1), G201–G207.
Pritts, T. A., Hungness, E. S., Hershko, D. D., et al.: Proteasome inhibitors induce heat shock response and increase IL-6 expression in human intestinal epithelial cells. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282(4), R1016–R1026.
Oba, M., Suico, M. A., Morino, S., et al.: Modified mild heat shock modality attenuates hepatic ischemia/reperfusion injury. J. Surg. Res., 2010, 162(2), 213–220.
Chen, S. W., Park, S. W., Kim, M., et al.: Human heat shock protein 27 overexpressing mice are protected against hepatic ischemia and reperfusion injury. Transplantation, 2009, 87(10), 1478–1487.
Ghosh, S., Baumann, J., Falusi, B., et al.: Hemodynamic effects of N-acetylcystein and ischemic preconditioning in a liver ischemia-reperfusion model. [Az N-acetilcisztein hemodinamikai hatása és ischaemiás prekondicionálás máj ischaemia-reperfúzió modellen.] Orv. Hetil., 2008, 149(47), 2245–2249. [Hungarian]
Concannon, C. G., Gorman, A. M., Samali, A.: On the role of Hsp27 in regulating apoptosis. Apoptosis, 2003, 8(1), 61–70.
Chen, S. W., Kim, M., Kim, M.: Mice that overexpress human heat shock protein 27 have increased renal injury following ischemia reperfusion. Kidney Int., 2009, 75(5), 499–510.