Egyre inkább felismerjük, hogy az asthma bronchiale heterogén entitás, amely különböző fenotípusokat ölel fel. A hatásosabb, személyre szabott terápia kulcsa a specifikus fenotípus azonosítása. Az asthma-fenotipizálás legkorábbi kísérleteként ajánlották extrinszik és intrinszik típusba sorolását. A klinikai asthmát elsődlegesen allergiás (atopiás) és nem allergiás (nem atopiás) asthmára oszthatjuk. Más fenotípusok a kiváltó tényezőkön alapulnak. Később a fenotipizálást a gyulladás domináló sejtes típusára alapozták. Ez lehet eosinophil vagy noneosinophil. A noneosinophil asthma lehet neutrophil, kevert vagy paucigranulocytás. Az IgE felfedezése nagy áttörést jelentett az asthmakutatásban. Az IgE egy immunglobulin, amelynek központi szerepe van a patomechanizmusban. Később újabb immunfenotípusokat azonosítottak: T helper-2 magas és T helper-2 alacsony altípus. A neutrophil asthma elsődlegesen T helper-17 indukálta mechanizmuson alapul. A fenotípusok azonosítására fokozódó mértékben alkalmazzák a klaszterelemzést. Az új adatok molekuláris utakat tártak fel. Azonban az asthma fenotipizálása komplex, mivel a különböző fenotípusok átfedik egymást. Ezért a kérdés további kutatásokat igényel. Biomarkerek, mint a vér és köpet eosinophilszintje, a kilégzett nitrogén-oxid-frakció, a szérum-immunglobulin-E, szérumperiostin azonosít különböző asthmafenotípusokat. Orv. Hetil., 2017, 158(13), 491–498.
Global Initiative for Asthma. 2016. http://www.ginaasthma.org
Coca, A. F., Cooke, R. A.: On the classification of the phenomena of hypersensitiviness. J. Immunol., 1923, 8, 163–182.
Keeney, E. I.: The history of asthma from Hippocrates to Meltzer. J. Allergy Clin. Immunol., 1964, 35, 215–226.
Auer, J., Lewis, P. A.: The physiology of the immediate reaction of anaphylaxis in the guinea-pig. J. Exp. Med., 1910, 12, 151–175.
Bousquet, J., Chanez, P., Lacoste, J. Y., et al.: Eosinophilic inflammation in asthma. NEJM, 1990, 323, 1033–1039.
Tiffeneau, R.: Hyperexcitabilité bronchomotrice de l’asthmatique, sequelle des agressions bronchosonstrictives allergiques. Allergy, 1959, 14, 416–432.
Walker, C., Bode, E., Boer, L., et al.: Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am. Rev. Respir. Dis., 1992, 146, 109–115.
Nair, P., Dasgupta, A., Brightling, C. E., et al.: How to diagnose and phenotype asthma. Clin. Chest Med., 2012, 33, 445–457.
Cooke, R. A.: Asthma in children. Its causes and treatment. JAMA, 1934, 102, 664–668.
Hajós, M.: The pathogenesis and therapy of asthma bronchiale. [Az asthma bronchiale pathogenezise és therapiája.] Orvtud. Akt. Probl., 1973, 1, 45–89. [Hungarian]
Kraszkó, P., Angyal, I.: Does “infectious” asthma bronchiale exist? [Van-e „infekt” asthma bronchiale?] Pneumol. Hung., 1984, 37, 495–499. [Hungarian]
Jackson, D. J., Makrinioti, H., Rana, B. M., et al.: IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am. J. Respir. Crit. Care Med., 2014, 190, 1373–1382.
Kowalski, M. L., Cieślak, M., Pérez-Novo, C. A., et al.: Clinical and immunological determinants of severe/refractory asthma (SRA): Association with Staphylococcal superantigen-specific IgE antibodies. Allergy, 2011, 66, 32–38.
Samter, M., Beers, R. F.: Intolerance to aspirin? Clinical studies and considerations of its pathogenesis. Ann. Intern. Med., 1968, 68, 975–983.
McNeill, R. S., Nairn, J. R., Ingram, M. G.: Exercise-induced asthma. QJM, 1966, 35, 55–67.
Lessard, A., Turcotte, H., Cormier, Y., et al.: Obesity and asthma. Chest, 2008, 134, 317–323.
Dixon, A. E., Pynter, M. E.: Mechanisms of asthma in obesity. Pleiotrop aspects of obesity produce distinc asthma phenotypes. Am. J. Respir. Cell Mol. Biol., 2016, 54, 601–608.
Gjomarkaj, M., Gaga, M., Bruselle, G., et al.: Frequent exacerbators – a distinc phenotype of severe asthma. Clin. Exp. Allergy, 2014, 44, 212–221.
Opina, M. D., Bleecker, E. R., Meyers, D. A., et al.: The very frequent exacerbator sub-phenotype is seen in all spectrum of asthma severity including milder disease in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med., 2015, 191, a4182.
Yii, A., Tan, J., Lapperre, T., et al.: Stability of the frequent-exacerbator phenotype in severe asthma: A longitudinal study. Am. J. Respir. Crit. Care Med., 2015, 191, A4149.
Ishizaka, K., Ishizaka, T., Hornbrook, M. M.: Physico-chemical properties of human reaginic antibody. J. Immunol., 1966, 97, 75–85.
Kraszko, P., Beregi, E.: Changes in the IgE content of the serum and bronchial mucosa in extrinsic and intrinsic bronchial asthma. Progr. Resp. Res., 1980, 14, 47–50.
Ying, S., Humbert, M., Meng, Q., et al.: Local expression of ε heavy chain of IgE in the bronchial mucosa in atopic and nonatopic asthma. J. Allergy Clin. Immunol., 2001, 107, 686–692.
Humbert, M., Grant, J. A., Taborda-Barata, L., et al.: High-affinity IgE receptor (FcεRI)-bearing cells in bronchial biopsies from atopic and nonatopic asthma. Am. J. Respir. Crit. Care Med., 1996, 153, 1931–1937.
Kay, A. B.: Leukocytes in asthma. Immunol. Investig., 1988, 17, 679–705.
Simpson, J. L., Scott, R., Boyle, M. J., et al.: Inflammatory subtypes in asthma: Assessment and identification using induced sputum. Respirology, 2006, 11, 54–61.
Horwitz, R. J., Busse, W. W.: Inflammation and asthma. Clin. Chest Med., 1995, 16, 583–602.
Liu, M. C., Hubbard, W. C., Proud, D., et al.: Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics. Am. Rev. Respir. Dis., 1991, 144, 51–58.
Korevaar, D. A., Westerhof, G. A, Wang, J., et al.: Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. Lancet Respir. Med., 2015, 3, 290–300.
Schleich, F. N., Chevremont, A., Paulus, V., et al.: Importance of concomittant local and systemic eosinophilia in uncontrolled asthma. Eur. Respir. J., 2014, 44, 97–108.
Kraszkó, P., Tomcsányi, A., Brunner, M.: The effect of allergen provocation on IgE level and on circulating eosinophil leukocyte count in bronchial asthma. [Allergén provokáció hatása az IgE szintre és a keringő eozinofil leukocitaszámra asthma bronchialéban.] Pneumol. Hung., 1980, 33, 481–486. [Hungarian]
Turner, M. O., Hussack, P., Sears, M. R., et al.: Exacerbations of asthma without sputum eosinophilia. Thorax, 1995, 50, 1057–1061.
Fahy, J. V., Kim, K. W., Liu, J., et al.: Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J. Allergy Clin. Immunol., 1995, 95, 843–852.
Wenzel, S. E., Schwartz, L. B., Langmack, E. L., et al.: Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am. J. Respir. Crit. Care Med., 1999, 160, 1001–1008.
Mc Grath, K. W., Icitovic, N., Boiushey, H. A., et al.: A large subgroup of mild-to-moderate asthma is persistent noneosinophilic. Am. J. Respir. Crit. Care Med., 2012, 185, 612–619.
Green, R. H., Brightling, C. E., Woltmann, G., et al.: Analysis of induced sputum in adults with asthma: neutrophilia and poor response to inhaled corticosteroids. Thorax, 2002, 57, 875–879.
Haldar, P., Pavord, D.: Noneosinophilic asthma: A distinct clinical and pathologic phenotype. J. Allergy Clin. Immunol., 2007, 119, 1043–1052.
Majewski, S., Ciebiada, M., Domagala, M., et al.: Short-term reproducibility of the inflammatory phenotype in different subgroups of adult asthma cohort. Mediators Inflamm., 2015, 2015, 419039.
Nadif, R., Siroux, V., Boudier, A., et al.: Blood granulocyte patterns as predictors of asthma phenotypes in adults from the EGEA study. Eur. Respir. J., 2016, 48, 1040–1051.
Boudier, A., Curjuric, I., Basagana, X., et al.: Ten-year follow-up of cluster-based asthma phenotypes in adults. Am. J. Respir. Crit. Care Med., 2013, 188, 550–560.
Siroux, V., González, J. R., Bouzigon, E., et al.: Genetic heterogenity of asthma phenotypes identified by a clustering approach. Eur. Respir. J., 2014, 43, 439–452.
Howrylak, J. A., Fuhlbrigge, A. L., Strunk, R. C., et al.: Classification of childhood asthma phenotypes and long-term clinical responses to inhaled antiinflammatory medications. J. Allergy Clin. Immunol., 2014, 133, 1289–1300.
Kim, T. B., Jang, A. S., Kwon, H. K., et al.: Identification of asthma clusters in two independent Korean adult asthma cohort. Eur. Respir. J., 2013, 41, 1308–1314.
Lavoie-Charland, É., Bérube, J. C., Laviolette, M., et al.: Multivariate asthma phenotypes in adults: The Quebec City Case- Control Asthma cohort. Open J. Respir. Dis., 2013, 3, 133–142.
Haldar, P., Pavord, I. D., Shaw, D. E., et al.: Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med., 2008, 178, 218–224.
Moore, W. C., Meyers, D. A., Wenzel, S. E., et al.: Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med., 2010, 181, 315–323.
Siroux, V., Basagana, X., Boudier, A., et al.: Identifying adult asthma phenotypes using a clustering approach. Eur. Respir. J., 2011, 38, 310–317.
Amelink, M., de Nijs, S. B., de Groot, J. C., et al.: Three phenotypes of adult-onset asthma. Allergy, 2013, 68, 674–680.
Robinson, D. S., Hamid, Q., Ying, S., et al.: Predominant TH2 – like bronchoalveolar T-lymphocyte population in atopic asthma. NEJM, 1992, 326, 298–304.
Woodruff, P. G., Modrek, B., Choy, D. F., et al.: T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med., 2009, 180, 388–395.
Sun, Y., Zhou, Q., Yao, W.: Sputum interleukin-17 is increased and associated with airway neutrophilia in patients with severe asthma. Chin. Med. J., 2005, 118, 953–956.
Al-Ramli, W., Préfontaine, D., Chouiali, F., et al.: TH 17-associated cytokines (IL-17A and IL-17F) in severe asthma. J. Allergy Clin. Immunol., 2009, 123, 1185–1187.
Ramirez-Velazquez, C., Castillo, E. C., Guido-Bayardo, L., et al.: IL-17-producing peripherial blood CD177+ neutrophils increase in allergic asthmatic subjects. Allergy Asthma Clin. Immunol., 2013, 9, 23.
Cosmi, L., Maggi, L., Santgarlasci, V., et al.: Identification of a novel subset of human circulating memory CD4+ T cells that produce both IL-17A and IL-4. J. Allergy Clin. Immunol., 2010, 125, 222–230.
Sven, S., Scheers, H., Marijsse, G., et al.: Th2-high asthma: a heterogenous asthma population? Clin. Transl. Allergy, 2015, 5(Suppl. 2), 01.
Wenzel, S. E.: Emergence of biomolecular pathways to define novel asthma phenotypes. Typ-2 immunity and beyond. Am. J. Respir. Cell Mol. Biol., 2016, 55, 1–4.
Pelaia, G., Vatgrella, A., Busceti, M. T., et al.: Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediators Inflamm., 2015, 2015, 879783.
Akdis, C. A., Akdis, M.: Mechanisms of allergen-specific immunotherapy and immun tolerance to allergens. World Allergy Organ. J., 2015, 8, 17.
Raedler, D., Ballenberger, N., Klucker, E., et al.: Identification of novel immune phenotypes for allergic and nonallergic childhood asthma. J. Allergy Clin. Immunol., 2015, 135, 81–91.
Baines, K. J., Simpson, J. L., Wood, L. G., et al.: Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J. Allergy Clin. Immunol., 2014, 133, 997–1007.
Modena, B. D., Tedrow, J. R., Milosevic, J., et al.: Gene expression in relation to exhaled nitric oxide identifies novel asthma phenotypes with unique biomolecular pathways. Am. J. Respir. Crit. Care Med., 2014, 190, 1363–1372.
Baines, K. J., Simpson, J. L., Wood, L. G., et al.: Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J. Allergy Clin. Immunol., 2011, 127, 153–160.
Yan, X., Chu, J. H., Gomez, J., et al.: Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. Am. J. Respir. Crit. Care Med., 2015, 191, 1116–1125.
Kidd, C. D., Thompson, P. J., Barrett, L., et al.: Histone modifications and asthma. Am. J. Respir. Cell Mol. Biol., 2016, 54, 3–12.
Nicodemus-Johnson, J., Naughton, K. A., Sudi, J., et al.: Genome-wide methylation study identifies an IL-13-induced epigenetic signature in asthmatic airways. Am. J. Respir. Crit. Care Med., 2016, 193, 376–385.
Simpson, J. L., Phipps, S., Baines, K. J., et al.: Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. Eur. Respir. J., 2014, 43, 1067–1076.
Panganiban, R. P., Wang, Y., Howrylak, J., et al.: Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J. Allergy Clin. Immunol., 2016, 137, 1423–1432.
Westerhof, G. A., Korevaar, D. A., Amelink, M., et al.: Biomarkers to identify sputum eosinophilia in different adult asthma phenotypes. Eur. Respir. J., 2015, 46, 688–696.
Wagener, A. H., de Nijs, S. B., Lutter, R., et al.: External validation of blood eosinophil, FENO and serum periostin as surrogate for sputum eosinophils in asthma. Thorax, 2015, 70, 115–120.
Izuhara, K., Conway, S. J., Moore, B. B., et al.: Roles of periostin in respiratory disorders. Am. J. Respir. Crit. Care Med., 2016, 193, 949–956.
Simpson, J. L., Yang, I. A., Upham, J. W., et al.: Periostin levels and eosinophilic inflammation in poorly-controlled asthma. BMC Pulm. Med., 2016, 16, 67.
Jia, G., Erickson, R. W., Choy, D. F., et al.: Periostin is a sytemic biomarker of eosinophilic airway inflammation in asthmatic patients. J. Allergy Clin. Immunol., 2012, 130, 647–654.
Matsusaka, M., Kabata, H., Fukunaga, K., et al.: Phenotype of asthma related with high serum periostin levels. Allergol. Internat., 2015, 64, 175–180.
Nagasaki, T., Matsumoto, H., Kanemitsu, Y., et al.: Using exhaled nitric oxide and serum periostin as a composite marker to identify severe/steroid-insensitive asthma. Am. J. Respir. Crit. Care Dis., 2016, 191, A2494.
Peters, M. C., Mekkonen, Z. K., Yuan, S., et al.: Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J. Allergy Clin. Immunol., 2014, 133, 388–394.
Ray, A., Oriss, T. B., Wenzel, S. E.: Emerging molecular phenotypes of asthma. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 308, L130–L140.
Silkoff, P. E., Strambu, I, Laviolette, M., et al.: Asthma characteristics and biomarkers from the Airway Disease Endotyping for Personalized Therapeutics (ADEPT) longitudinal profiling study. Respir. Res., 2015, 16, 142.
Little, S. A., Chalmers, G. W., MacLeod, K. J., et al.: Non-invasive markers of airway inflammation as predictors of oral steroid responsiveness in asthma. Thorax, 2000, 55, 232–234.
Jang, A. S., Lee, J. H., Péark, S. W., et al.: Factors influencing the responsiveness to inhaled glucocorticoids of patients with moderate-to-severe asthma. Chest, 2005, 128, 1140–1145.
Barbaro, M. P., Spanevello, A., Palladino, G. P., et al.: Exhaled matrix metalloproteinase-9 (MMP-9) in different biological phenotypes of asthma. Eur. J. Intern. Med., 2014, 25, 92–96.