View More View Less
  • 1 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Pécs, Ifjúság u. 13., 7624
Restricted access

Absztrakt:

A nem alkoholos zsírmáj a metabolikus szindróma májmanifesztációja, a leggyakoribb májbetegség, súlyos formája a nem alkoholos steatohepatitis. Patogenezisében számos genetikai és környezeti tényező együtthatása vezet a májban a trigliceridfelhalmozódáshoz és a gyulladásos kaszkád kialakulásához. A telített zsírban gazdag étrend, az obesitas, az adipocyták diszfunkciója, a citokinek, az inzulinrezisztencia és a következményes fokozott lipolízis, a szabad zsírsavak májba jutása, a lipotoxicitás és az oxidatív stressz mind együtt vezetnek májsejtkárosodáshoz és az inflammasoma aktiválásához, a „steril gyulladáshoz”. A hepaticus csillagsejtek és progenitor sejtek a fibrogenezis fő tényezői. A bélmikrobióta megváltozása, a bakteriális túlnövekedés és az endotoxinaemia is kulcsfontosságú a kórfolyamatban. A hajlamosító genetikai tényezők közül a patatinszerű foszfolipáz, valamint a transzmembrán-6 superfamily 2 gén mutációi jelentősek. Az epigenetikai regulátorok között főleg a mikro-RNS-ek és az extracelluláris vesiculumok kapnak szerepet a betegségben. A nem alkoholos zsírmáj patogenezisének jobb megismerése haladást hozhat új terápiás eljárások kifejlesztésében. Orv Hetil. 2017; 158(23): 882–894.

  • 1

    Koenig A, Abdelatif D, Fazel Y, et al. A meta-analytic assessment of worldwide prevalence of non alcoholic fatty liver disease (NAFLD) and associated co-morbidities. Hepatology. 2015; 62(Suppl 1): 1286A.

  • 2

    Younossi ZM, Koenig A, Abdelatif D, et al. Global epidemiology of non-alcoholic fatty liver disease: meta-analytic assessment of prevalence, incidence and outcomes. Hepatology. 2016; 64: 73–84.

  • 3

    Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism Clinical Experimental. 2016, 65: 1038–1048.

  • 4

    Francque SM, van der Graff D, Kwanten WJ. Non-alcoholic fatty liver disease and cardiovascular risk: Pathophysiological mechanims and implications. J Hepatol. 2016; 65: 425–443.

  • 5

    Byrne CD, Targher G. NAFLD: A multisysem disease. J Hepatol. 2015; 62(1 Suppl): S47–S64.

  • 6

    Armstrong MJ, Adams LA, Canbay A, et al. Extrahepatic complications on nonalcoholic fatty liver disease. Hepatology. 2014; 59: 1174–1197.

  • 7

    Day CP, James OF. Steatohepatitis: A tale of two “hits”? Gastroenterology. 1998; 114: 842–845.

  • 8

    Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology. 2010; 52: 1836–1846.

  • 9

    Hagymási K, Lengyel G. Non-alcoholic steatosis/steatohepatitis – 2010. [Nem alkoholos steatosis/steatohepatitis – 2010.] Orv Hetil. 2010; 151: 1940–1945. [Hungarian]

  • 10

    Pár G, Horváth G, Pár A. Non-alcoholic fatty liver disease and steatohepatitis. [Nem alkoholos zsírmáj és zsírmájhepatitis.] Orv Hetil. 2013; 154: 1124–1134. [Hungarian]

  • 11

    Pár A, Pár G. Non-alcoholic fatty liver disease and hepatocellular carcinoma – 2016. [Nem alkoholos zsírmáj és hepatocellularis carcinoma – 2016.] Orv Hetil. 2016; 157: 987–994. [Hungarian]

  • 12

    Torres DM, Harrison SA. Nonalcoholic steatohepatitis and noncirrhotic hepatocellular carcinoma: fertile soil. Semin Liver Dis. 2012; 32: 30–38.

  • 13

    Scalera A, Tarantino G. Could metabolic syndrome lead to hepatocellular carcinoma via non-alcoholic fatty liver disease? World J Gastroenterol. 2014; 20: 9217–9228.

  • 14

    Wong CR, Nguyen MH, Lim JK. Hepatocellular carcinoma in patients with non-alcoholic fatty liver disease. World J Gastroenterol. 2016; 22: 8294–8303.

  • 15

    Perumpail RB, Liu A, Wong RJ, et al. Pathogenesis of hepatocarcinogenesis in non-cirrhotic nonalcoholic fatty liver disease: potential mechanistic pathways. World J Hepatol. 2015; 7: 2384–2388.

  • 16

    Noureddin M, Mato JM, Lu SC. Nonalcoholic fatty liver disease: Update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Exp Biol Med. 2015; 240: 809–820.

  • 17

    Khan FZ, Perumpail RB, Wong RJ, et al. Advances in hepatocellular carcinoma: Nonalcoholic steatohepatitis-related hepatocellular carcinoma. World J Hepatol. 2015; 7: 2155–2161.

  • 18

    Magee N, Zou A, Zhang Y. Pathogenesis of nonalcoholic steatohepatitis: interactions between liver parenchymal and nonparenchymal cells. BioMed Res Internat. 2016; 2016: 5170402.

  • 19

    Ahmed M. Non-alcoholic fatty liver disease in 2015. World J Hepatol. 2015; 7: 1450–1459.

  • 20

    Yu J, Marsh S, Hu J, et al. The pathogenesis of nonalcoholic fatty liver disease: Interplay between diet, gut microbiota, and genetic background. Gastroenterol Res Pract. 2016; 2016: 2862173.

  • 21

    Szabó Gy, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015; 12: 387–400.

  • 22

    Tang Y, Bian Z, Zhao L, et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immmunol. 2011; 166: 281–290.

  • 23

    Hammerich L, Heymann F, Tacke F. Role of IL-17 and Th17 cells in liver diseases. Clin Dev Immunol. 2011; 2011: 345803.

  • 24

    Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013; 14: 416–429.

  • 25

    Kwon H, Song K, Han C, et al. Inhibition of hedgehog signaling ameliorates hepatic inflammation in mice with nonalcoholic fatty liver disease. Hepatology. 2016; 63: 1155–1169.

  • 26

    Ju SY, Jeong HS, Kim H. Blood vitamin D status and metabolic syndrome in the general adult population: a dose-response meta-analysis. J Clin Endocrinol Metab. 2014; 99: 1053–1063.

  • 27

    Eliades M, Spyrou E. Vitamin D: a new player in non-alcoholic fatty liver disease? World J Gastroenterol. 2015; 21: 1718–1727.

  • 28

    Nelson JE, Roth CL, Wilson LA, et al. Vitamin D deficiency is associated with increased risk of non-alcoholic steatohepatitis in adults with non-alcoholic fatty liver disease: Possible role for MAPK and NFκB? Am J Gastroenterol. 2016; 111: 852–863.

  • 29

    Sharifi N, Amani R, Hajitani E, et al. Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. Endocrine. 2014; 47: 70–80.

  • 30

    Leung C, Rivera L, Furness JB, et al. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016; 13: 412–425.

  • 31

    Boursier J, Diehl AM. Implication of gut microbiota in nonalcoholic fatty liver disease. PLoS Pathog. 2015; 11: e1004559.

  • 32

    Han P, Sun D, Yang J. Interaction between periodontitis and liver diseases. Biomed Rep. 2016; 5: 267–276.

  • 33

    Gurav AN. The association of periodontitis and metabolic syndrome. Dent Res J (Isfahan). 2014; 11: 1–10.

  • 34

    Thomas B, Ramesh A, Suresh S, et al. A comparative evaluation of antioxidant enzymes and selenium in the serum of periodontitis patients with diabetes mellitus type 2. Contemp Clin Dent. 2013; 4: 176–180.

  • 35

    Schwimmer JB, Celedon MA, Lavine JE, et al. Heritabily of nonalcoholic fatty liver disease. Gastroenterology. 2009; 136: 1585–1592.

  • 36

    Dongiovanni P, Anstee QM, Valenti L. Genetic predisposition in NAFLD and NASH: Impact on severity of liver disease and response to treatment. Curr Pharm Des. 2013; 19: 5219–5238.

  • 37

    Clarke JD, Novak P, Lake AD, et al. Characterization of hepatocellular carcinoma related genes and metabolites in human nonalcoholic fatty liver disease. Dig Dis Sci. 2014; 59: 365–374.

  • 38

    Dongiovanni P, Romeo S, Valenti L. Hepatocellular carcinoma in non-alcoholic fatty liver disease: role of environmental and genetic factors. World J Gastroenterol. 2014; 20: 12945–12955.

  • 39

    Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008; 40: 1461–1465.

  • 40

    Kawaguchi T, Sumida Y, Umemure A, et al. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcohoic fatty liver disease in Japanese. PLoS ONE. 2012; 7: e3822.

  • 41

    Liu YL, Patman GL, Leathart JB, et al. Carriage of the PNPLA3 rs 7380409 C>G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol. 2014; 61: 75–81.

  • 42

    Charrez B, Qiao L, Hebbard L. Hepatocellular carcinoma and non-alcoholic steatohepatitis. The state of play. World J Gastroenterol. 2016; 22: 2494–2502.

  • 43

    Kozlitina J, Smagris E, Stender S. Exon-wide association study identifies a TM6SF2 variant that transfers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014; 46: 352–356.

  • 44

    Liu YL, Reeves HL, Burt AD, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun. 2014; 5: 4309.

  • 45

    Dongiovanni P, Petta S, Maglio C, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology. 2015; 61: 506–514.

  • 46

    Tan HL, Zain SM, Mohamed R, et al. Association of glucokinase regulatory gene polymorphisms with risk and severity of non-alcoholic fatty liver disease: an interaction study with adiponutrin gene. J Gastroenterol. 2014; 49: 1056–1064.

  • 47

    Mancina RM, Dongiovanni P, Petta S, et al. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology. 2016; 150: 1219–1230.e6.

  • 48

    Song J, da Costa KA, Fischer LM, et al. Polymorphism of the PEMT gene and susceptibility for nonalcoholic fatty liver disease (NAFLD). FASEB J. 2005; 19: 1266–1271.

  • 49

    Chalasani N, Guo X, Lomba R, et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic fatty liver disease. Gastroenterology. 2010; 139: 1567–1576.

  • 50

    Marra F, Lotersztain S. Pathophysiology of NASH: perspectives for a targeted treatment. Curr Pharm Res. 2013; 19: 5250–5269.

  • 51

    Jun DW, Han JH, Jang EC, et al. Polymorphisms of microsomal trigliceride transfer protein gene and phosphatidylethanolamine N-methyltransferase gene in alcoholic and nonalcoholic fatty liver disease in Koreans. Eur J Gastroenterol Hepatol. 2009; 21: 667–672.

  • 52

    Yen CL, Stone SJ, Koliwad S, et al. Thematic review series: Glycerolipids. DGAT enzymes and triacylglycerolbiosynthesis. J Lipid Res. 2008; 49: 2283–2301.

  • 53

    Speliotes EK, Yerges-Armstorn LM, Wu J, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distincts effects on metabolic traits. PLoS Genet. 2011; 7: e1001324.

  • 54

    Burdge GC, Hanson MA, Slater-Jefferies JL, et al. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br. J. Nutr. 2007; 97: 1036–1046.

  • 55

    Bruce KD, Cagampang FR. Epigenetic printing of the metabolic syndrome. Toxicol Mech Methods. 2011; 21: 353–361.

  • 56

    Wesolowski SR, El Kasmi KC, Jonscher KR, et al. Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol. 2017; 14: 81–96.

  • 57

    Ahrens M, Ammerpohl O, von Schonfels W, et al. DNA methylation analysis in non-alcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013; 18: 296–302.

  • 58

    Moschen AR, Wieser V, Gerner RR, et al. Adipose tissue and liver expression of SIRT1, 3, and 6 increase after extensive weight loss in morbid obesity. J Hepatol. 2013; 59: 1315–1322.

  • 59

    Yamada H, Ohashi K, Suzuki K, et al. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease. Clin Chim Acta. 2015; 446: 267–271.

  • 60

    Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol. 2013; 10: 656–668.

  • 61

    Csak T, Bala S, Lippai D, et al. MicroRNA-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis. Liver Int. 2015; 35: 532–541.

  • 62

    Gyöngyösi B, Végh E, Járay B, et al. Pretreatment microRNA level and outcome in sorafenib-treated hepatocellular carcinoma. J Histochem Cytochem. 2014; 62: 547–555.

  • 63

    Kornek M, Lynch, M, Mehta SH, et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology. 2012; 143: 448–458.

  • 64

    Povero D, Eguchi A, Li H, et al. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease. PloS ONE. 2014; 9: e113651.

  • 65

    Ban LA, Shackel NA, McLennan SV. Extracellular vesicles: a new frontier in biomarker discovery for non-alcoholic fatty liver disease. Int J Mol Sci. 2016; 17: 376.

  • 66

    Eguchi A, Mulya A, Lazic M, et al. Microparticles release by adipocytes act as “find me” signals to promote macrophage migration. PloS ONE. 2015; 10: e123110.

  • 67

    Povero D, Eguchi A, Niesman IR, et al. Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require Vanin-1 for uptake by endothelial cells. Sci Signal. 2013; 6: ra88.

  • 68

    Kranendonk ME, Visseren FL, van Herwarden JA, et al. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity. 2014; 22: 2216–2223.

  • 69

    Murakami Y, Toyoda H, Tanahashi T, et al. Comprehensive miRNA expression analysis in peripheral blood can diagnose liver disease. PLoS ONE. 2012; 7: e48366.

All Time Past Year Past 30 Days
Abstract Views 379 377 40
Full Text Views 114 7 0
PDF Downloads 73 4 0