View More View Less
  • 1 Debreceni Egyetem, Általános Orvostudományi Kar, Debrecen, Nagyerdei krt. 98., 4032
  • 2 Lund University, Lund, Svédország
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $1,070.00

Absztrakt:

A melanoma malignum az egyik legagresszívebb daganat, amely gyakran képez áttétet távoli szervekbe. Az előrehaladott tumorok közel felében figyeltek meg agyi metasztázist. A korai diagnózis a betegség kimenetele szempontjából nagy jelentőségű. Az új, hatékony terápiák kialakításában fontos a bekövetkező genetikai és epigenetikai eltérések feltérképezése, ami ígéretes terápiás célpontokat jelölhet ki. Leggyakrabban a mitogénaktivált proteinkináz útvonal, a foszfatidil-inozitol-3-kináz jelátviteli útvonal és a sejtciklus-szabályozó molekulák génjeinek mutációi vezethetnek melanoma kialakulásához. A melanoma agyi áttétképzésének molekuláris folyamata nem teljesen feltárt. Közleményünkben összefoglaljuk a melanoma, illetve az agyi metasztázis kialakulásában szerepet játszó genetikai eltéréseket és molekuláris mechanizmusokat. Orv Hetil. 2017; 158(28): 1083–1091.

  • 1

    Ragnarsson-Olding BK. Primary malignant melanoma of the vulva – an aggressive tumor for modeling the genesis of non-UV light-associated melanomas. Acta Oncol. 2004; 43: 421–435.

  • 2

    Hammer H, Tóth-Molnár E, Oláh J, et al. Relationship of the uveal melanoma and the dysplastic naevus syndrome. [Az uvealis melanoma és a dysplasticus naevus-syndroma kapcsolata.] Magy Onkol. 2005; 49: 15–18. [Hungarian]

  • 3

    Berwick M, Buller DB, Cust A, et al. Melanoma epidemiology and prevention. Cancer Treat Res. 2016; 167: 17–49.

  • 4

    Oláh J. Modern diagnosis and treatment of the melanoma malignum. [A melanoma malignum korszerű diagnózisa és kezelése.] Lege Artis Med. 2005; 15: 525–534. [Hungarian]

  • 5

    Braeuer RR, Watson IR, Wu CJ, et al. Why is melanoma so metastatic? Pigment Cell Melanoma Res. 2014; 27: 19–36.

  • 6

    Ajithkumar T, Parkinson C, Fife K, et al. Evolving treatment options for melanoma brain metastases. Lancet Oncol. 2015; 16: e486–e497.

  • 7

    Fedorcsák I, Sipos L. Treatment of brain melanoma metastases. [Agyi melanomaáttétek kezelése.] Magy Onkol. 2003; 47: 109–112. [Hungarian]

  • 8

    Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer 2016; 16: 345–358.

  • 9

    Weinstein D, Leininger J, Hamby C, et al. Diagnostic and prognostic biomarkers in melanoma. J Clin Aesthet Dermatol. 2014; 7: 13–24.

  • 10

    Karagiannis P, Fittall M, Karagiannis SN. Evaluating biomarkers in melanoma. Front Oncol. 2015; 4: 383.

  • 11

    Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009; 27: 6199–6206.

  • 12

    Cirenajwis H. Molecular subtypes of melanoma. Biological and clinical significance. Doctoral dissertation. Lund University, Faculty of Medicine, Lund, 2016.

  • 13

    The Cancer Genome Atlas Network: Genomic classification of cutaneous melanoma. Cell 2015; 161: 1681–1696.

  • 14

    Dai X, Li T, Bai Z, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015; 5: 2929–2943.

  • 15

    Tsao H, Chin L, Garraway LA, et al. Melanoma: from mutations to medicine. Genes Dev. 2012; 26: 1131–1155.

  • 16

    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

  • 17

    Nikolaev SI, Rimoldi D, Iseli C, et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet. 2011; 44: 133–139.

  • 18

    Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

  • 19

    Vidwans SJ, Flaherty KT, Fisher DE, et al. A melanoma molecular disease model. PLoS One 2011; 6: e18257.

  • 20

    Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9: 274–284.

  • 21

    Wong SY, Hynes RO. Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle 2006; 5: 812–817.

  • 22

    Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer 2004; 4: 448–456.

  • 23

    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239–252.

  • 24

    Tímár J, Csuka O, Remenár E, et al. Progression of head and neck squamous cell cancer. Cancer Metastasis Rev. 2005; 24: 107–127.

  • 25

    Zhang C, Yu D. Microenvironment determinants of brain metastasis. Cell Biosci. 2011; 1: 8.

  • 26

    Kircher DA, Silvis MR, Cho JH, et al. Melanoma brain metastasis: Mechanisms, models, and medicine. Int J Mol Sci. 2016; 17: pii: E1468.

  • 27

    Schumacker PT. Reactive oxygen species in cancer: a dance with the devil. Cancer Cell 2015; 27: 156–157.

  • 28

    Filomeni G, Rotilio G, Ciriolo MR. Cell signaling and the glutathione redox system. Biochem Pharmacol. 2002; 64: 1057–1064.

  • 29

    Cazes A, Ronai ZA. Metabolism in melanoma metastasis. Pigment Cell Melanoma Res. 2016; 29: 118–119.

  • 30

    Mareel M, Oliveira MJ, Madani I. Cancer invasion and metastasis: interacting ecosystems. Virchows Arch. 2009; 454: 599–622.

  • 31

    Rahmathulla G, Toms SA, Weil RJ. The molecular biology of brain metastasis. J Oncol. 2012; 2012: 723541.

  • 32

    Kienast Y, von Baumgarten L, Fuhrmann M, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010; 16: 116–122.

  • 33

    Davies MA, Stemke-Hale K, Lin E, et al. Integrated molecular and clinical analysis of AKT activation in metastatic melanoma. Clin Cancer Res. 2009; 15: 7538–7546.

  • 34

    Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2003; 2: 336–342.

  • 35

    Davies MA, Stemke-Hale K, Tellez C, et al. A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer 2008; 99: 1265–1268.

  • 36

    Molnár J, Fazakas C, Haskó J, et al. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K. Cell Adh Migr. 2016; 10: 269–281.

  • 37

    Wilhelm I, Molnár J, Fazakas C, et al. Role of the blood-brain barrier in the formation of brain metastases. Int J Mol Sci. 2013; 14: 1383–1411.

  • 38

    Sarvaiya PJ, Guo D, Ulasov I, et al. Chemokines in tumor progression and metastasis. Oncotarget 2013; 4: 2171–2185.

  • 39

    Murakami T, Cardones AR, Hwang ST. Chemokine receptors and melanoma metastasis. J Dermatol Sci. 2004; 36: 71–78.

  • 40

    Saldana-Caboverde A, Kos L. Roles of endothelin signaling in melanocyte development and melanoma. Pigment Cell Melanoma Res. 2010; 23: 160–170.

  • 41

    Denkins Y, Reiland J, Roy M, et al. Brain metastases in melanoma: roles of neurotrophins. Neuro-Oncol. 2004; 6: 154–165.

  • 42

    Zhang C, Zhang F, Tsan R, et al. Transforming growth factor-β2 is a molecular determinant for site-specific melanoma metastasis in the brain. Cancer Res. 2009; 69: 828–835.

  • 43

    Li JR, Wan, JQ, Gong Q, et al. MicroRNA-328 inhibits proliferation of human melanoma cells by targeting TGFβ2. Asian Pac J Cancer Prev. 2015; 16: 1575–1579.

  • 44

    Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010; 37: 13–25.

  • 45

    Marchetti D, Li J, Shen R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res. 2000; 60: 4767–4770.

  • 46

    Vlodavsky I, Goldshmidt O, Zcharia E, et al. Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol. 2002; 12: 121–129.

  • 47

    Ito A, Katoh F, Kataoka TR, et al. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J Clin Invest. 2000; 105: 1189–1197.

  • 48

    Hsu M, Andl T, Li G, et al. Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci. 2000; 113: 1535–1542.

  • 49

    Sargen MR, Gormley RH, Pasha TL. Melanocytic tumors express connexin 43 but not 26: Immunohistochemical analysis with potential significance in melanocytic oncogenesis. Am J Dermatopathol. 2013; 35: 813–817.

  • 50

    Tittarelli A, Guerrero I, Tempio F, et al. Overexpression of connexin 43 reduces melanoma proliferative and metastatic capacity. Br J Cancer 2016; 115: e14. Correction to: Br J Cancer 2015; 113: 259–267.

  • 51

    Herwig N, Belter B, Wolf S, et al. Interaction of extracellular S100A4 with RAGE prompts prometastatic activation of A375 melanoma cells. J Cell Mol Med. 2016; 20: 825–835.

  • 52

    Hernández JL, Padilla L, Dakhel S, et al. Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody. PloS One 2013; 8: 72480.

  • 53

    Jilaveanu LB, Parisi F, Barr ML, et al. PLEKHA5 as a biomarker and potential mediator of melanoma brain metastasis. Clin Cancer Res. 2015; 21: 2138–2147.

  • 54

    Klein A, Schwartz H, Sagi-Assif O, et al. Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. J Pathol. 2015; 236: 116–127.

  • 55

    Ishihara H, Kubota H, Lindberg RL, et al. Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor β2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol. 2008; 67: 435–448.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 10 0 0
Nov 2020 9 0 0
Dec 2020 14 0 0
Jan 2021 3 1 2
Feb 2021 17 0 0
Mar 2021 16 0 0
Apr 2021 3 0 0