View More View Less
  • 1 Debreceni Egyetem, Általános Orvostudományi Kar, Debrecen, Nagyerdei krt. 98., 4032
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $1,070.00

Absztrakt:

Az elmúlt években egyre több adat jelent meg a D-vitamin immunregulációban betöltött szerepével kapcsolatosan. Feltételezhető, hogy az autoimmun és gyulladásos reumatológiai betegségek patogenezisében és fenntartásában is kiemelkedő jelentősége van az alacsony D-vitamin-szintnek. Számos autoimmun betegségben, így szisztémás sclerosisban (SSc) is gyakori a D-vitamin-deficientia előfordulása, amely asszociációt mutat az – ebben a betegcsoportban tapasztalt – alacsony csontsűrűségértékekkel és az osteoporosis magasabb prevalenciájával. SSc-ben a hagyományos osteoporosis-rizikófaktorok jelenlétén túl egyéb, betegségspecifikus tényezők (bőr- és belszervi érintettség, malabsorptio, szisztémássclerosis-altípus, szerológiai jellegzetességek, gyógyszeres kezelés) is hozzájárulnak a csontásványianyag-tartalom csökkenéséhez. A fenti tényezők komplex interakciói és a klinikai vizsgálatok heterogenitása miatt nehéz azok valódi hatását megítélni a sclerodermás betegek csontsűrűségére, és rendkívül hiányosak az ismereteink a betegek törési rizikójára, illetve osteoporoticus törésekkel összefüggő mortalitására vonatkozóan is. Jelen közleményben áttekintjük a D-vitamin immunmoduláns hatásaival kapcsolatban rendelkezésre álló irodalmi adatokat és összefoglaljuk a szisztémás sclerosisos betegek körében vizsgált D-vitamin-szintre, csontásványianyag-tartalomra, csontanyagcsere-markerek eltéréseire és az osteoporosis előfordulására vonatkozó eredményeket. Orv Hetil. 2017; 158(32): 1252–1258.

  • 1

    Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009; 360: 1989–2003.

  • 2

    LeRoy EC, Medsger TA. Criteria for the classification of early systemic sclerosis. J Rheumatol. 2001; 28: 1573–1576.

  • 3

    Hissaria P, Lester S, Hakendorf P, et al. Survival in scleroderma: results from the population-based South Australian Register. Intern Med J. 2011; 41: 381–390.

  • 4

    Simeón CP, Armadans L, Fonollosa V, et al. Mortality and prognostic factors in Spanish patients with systemic sclerosis. Rheumatology 2003; 42: 71–75.

  • 5

    Al-Dhaher FF, Pope JE, Ouimet JM. Determinants of morbidity and mortality of systemic sclerosis in Canada. Semin Arthritis Rheum. 2010; 39: 269–277.

  • 6

    Hudson M, Thombs BD, Steele R, et al. Health-related quality of life in systemic sclerosis: a systematic review. Arthritis Rheum. 2009; 61: 1112–1120.

  • 7

    Sandqvist G, Eklund M, Akesson A, et al. Daily activities and hand function in women with scleroderma. Scand J Rheumatol. 2004; 33: 102–107.

  • 8

    Loucks J, Pope JE. Osteoporosis in scleroderma. Semin Arthritis Rheum. 2005; 34: 678–682.

  • 9

    Omair MA, Pagnoux C, McDonald-Blumer H, et al. Low bone density in systemic sclerosis. A systematic review. J Rheumatol. 2013; 40: 1881–1890.

  • 10

    Rachner TD, Khosla S, Hofbauer LC, et al. Osteoporosis: now and the future. Lancet 2011; 377: 1276–1287.

  • 11

    Unnanuntana A, Gladnick BP, Donnelly E, et al. The assessment of fracture risk. J Bone Joint Surg Am. 2010; 92: 743–753.

  • 12

    Brewer L, Williams D, Moore A. Current and future treatment options in osteoporosis. Eur J Clin Pharmacol. 2011; 67: 321–331.

  • 13

    Engelke K, Adams JE, Armbrecht G, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom. 2008; 11: 123–162.

  • 14

    Boutroy S, Bouxsein ML, Munoz F, et al. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005; 90: 6508–6515.

  • 15

    Avouac J, Koumakis E, Toth E, et al. Increased risk of osteoporosis and fracture in women with systemic sclerosis: a comparative study with rheumatoid arthritis. Arthritis Care Res. 2012; 64: 1871–1878.

  • 16

    Sun YN, Feng XY, He L, et al. Prevalence and possible risk factors of low bone mineral density in untreated female patients with systemic lupus erythematosus. Biomed Res Int. 2015; 2015: 510514.

  • 17

    Amital H, Szekanecz Z, Szűcs G, et al. Serum concentrations of 25-OH vitamin D in patients with systemic lupus erhythematosus (SLE) are inversely related to disease activity: is it time to routinely supplement patients with SLE with vitamin D? Ann Rheum Dis. 2010; 69: 1155–1157.

  • 18

    Zold E, Szodoray P, Gaal J, et al. Vitamin D deficiency in undifferentiated connective tissue disease. Arthritis Res Ther. 2008; 10: R123.

  • 19

    Frediani B, Baldi F, Falsetti P, et al. Bone mineral density in patients with systemic sclerosis. Ann Rheum Dis. 2004; 63: 326–327.

  • 20

    Sampaio-Barros PD, Costa-Paiva L, Filardi S, et al. Prognostic factors of low bone mineral density in systemic sclerosis. Clin Exp Rheumatol. 2005; 23: 180–184.

  • 21

    Bikle D. Nonclassic action of vitamin D. J Clin Endocrinol Metab. 2009; 94: 26–34.

  • 22

    Wu S, Ren S, Nguyen L, et al. Splice variants of the CYP27b1 gene and the regulation of 1,25-dihydroxyvitamin D3 production. Endocrinology 2007; 148: 3410–3418.

  • 23

    van Etten E, Stoffels K, Gysemans C, et al. Regulation of vitamin D homeostasis: implications for the immune system. Nutr Rev. 2008; 66(10 Suppl 2): S125–S134.

  • 24

    Vacca A, Cormier C, Methieu A, et al. Vitamin D levels and potencial impact in systemic sclerosis. Clin Exp Rheumatol. 2011; 29: 1024–1031.

  • 25

    Daniel C, Sartory NA, Zahn N, et al. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther. 2008; 324: 23–33.

  • 26

    Orbach H, Zandman-Goddard G, Amital H, et al. Novel biomarkers in autoimmune diseases: prolactin, ferritin, vitamin D, and TPA levels in autoimmune diseases. Ann NY Acad Sci. 2007; 1109: 385–400.

  • 27

    Yang CY, Leung PS, Adamopoulos ME, et al. The implication of vitamin D and autoimmunity: a comprehensive review. Clin Rev Allergy Immunol. 2013; 45: 217–226.

  • 28

    Zerr P, Vollath S, Palumbo-Zerr K, et al. Vitamin D receptor regulates TGF-β signalling in systemic sclerosis. Ann Rheum Dis. 2015; 74: e20.

  • 29

    Bivona G, Agnello L, Pivetti A, et al. Association between hypovitaminosis D and systemic sclerosis: True or fake? Clin Chim Acta 2016; 458: 115–119.

  • 30

    Allanore Y, Wipff J, Kahan A, et al. Genetic basis for systemic sclerosis. Joint Bone Spine 2007; 74: 577–583.

  • 31

    Carmel NN, Rotman-Pikielny P, Lavrov A, et al. Vitamin D antibodies in systemic sclerosis patients: findings and clinical correlations. Isr Med Assoc J. 2015; 17: 80–84.

  • 32

    Braun-Moscovici Y, Furst DE, Markovits D, et al.: Vitamin D, parathyroid hormone and acroosteolysis in systemic sclerosis. J Rheumatol. 2008; 35: 2201–2205.

  • 33

    Vacca A, Cormier C, Piras M, et al. Vitamin D deficiency and insufficiency in 2 independent cohorts of patients with systemic sclerosis. J Rheumatol. 2009; 36: 1924–1929.

  • 34

    Arnson Y, Amital H, Agmon-Levin N, et al. Serum 25-OH vitamin D concentrations are linked with various clinical aspects in patients with systemic sclerosis: a retrospective cohort study and review of literature. Autoimmun Rev. 2011; 10: 490–494.

  • 35

    Caramaschi P, Dalla Gassa A, Ruzzenente O, et al. Very low levels of vitamin D in systemic sclerosis patients. Clin Rheumatol. 2010; 29: 1419–1425.

  • 36

    Belloli L, Ughi N, Marasini B. Vitamin D in systemic sclerosis. Clin Rheumatol. 2011; 30: 145–146.

  • 37

    Shinjo SK, Bonfá E, de Falco Caparbo V, et al. Low bone mass in juvenile onset sclerosis systemic: the possible role for 25-hydroxyvitamin D insufficiency. Rheumatol Int. 2011; 31: 1075–1080.

  • 38

    Bottomley WW, Jutley J, Wood EJ, et al. The effect of calcipotriol on lesional fibrosblasts from patients with active morphoea. Acta Derm Venereol. 1995; 75: 364–366.

  • 39

    Dovio A, Data V, Carignola R, et al. Circulating osteoprotegerin and soluble RANK ligand in systemic sclerosis. J Rheumatol. 2008; 35: 2206–2213.

  • 40

    Zofková I. Pathophysiological and clinical importance of insulin-like growth factor-1 with respect to bone metabolism. Physiol Res. 2003; 52: 657–679.

  • 41

    Hamaguchi Y, Fujimoto M, Matsushita T, et al. Elevated serum insulin-like growth factor (IGF-1) and IGF binding protein-3 levels in patients with systemic sclerosis: possible role in the development of fibrosis. J Rheumatol. 2008; 35: 2363–2371.

  • 42

    Allanore Y, Borderie D, Lemaréchal H, et al. Correlation of serum collagen I carboxyterminal telopeptide concentrations with cutaneous and pulmonary involvement in systemic sclerosis. J Rheumatol. 2003, 30; 68–73.

  • 43

    Atteritano M, Sorbara S, Bagnato G, et al. Bone mineral density, bone turnover markers and fractures in patients with systemic sclerosis: a case control study. PLoS ONE 2013; 8: e66991.

  • 44

    Ibn Yacoub Y, Amine B, Laatiris A, et al. Bone density in Moroccan women with systemic scleroderma and its relationships with disease-related parameters and vitamin D status. Rheumatol Int. 2012; 32: 3143–3148.

  • 45

    Frediani B, Baldi F, Falsetti P, et al. Clinical determinants of bone mass and bone ultrasonometry in patients with systemic sclerosis. Clin Exp Rheumatol. 2004; 22: 313–318.

  • 46

    Marot M, Veléry A, Esteve E, et al. Prevalence and predictive factors of osteoporosis in systemic sclerosis patients: a case-control study. Oncotarget 2015; 6: 14865–14873.