View More View Less
  • 1 Miskolci Egyetem, Egészségügyi Kar, Miskolc
  • 2 Borsod-Abaúj-Zemplén Megyei Központi Kórház és Egyetemi Oktató Kórház, Miskolc
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $1,070.00

Absztrakt:

A pubertas az ember életében az a fejlődési szakasz, amikor a hypothalamus–hypophysis–gonád-tengely újból aktiválódik a nyugalmi állapot után. Az emberiséget régóta foglalkoztatja az a gondolat, hogy vajon melyek azok az exogén és endogén tényezők és mechanizmusok, amelyek befolyásolják a pubertas neuroendokrin eseményeinek időbeli lefolyását. A közelmúlt felfedezései segítettek a neuroendokrin rendszer működésének megértésében. Tisztázódott, hogy a kisspeptin kulcsszerepet játszik a pubertas kialakulásában és a fertilitás szabályozásában. A GnRH-pulzációs szekréció működésében azonban a kisspeptin, a neurokinin B és a dinorfin neuronokon kívül más pozitív és negatív jelzések is részt vesznek, irányítva a hypophysis gonadotropin hormonjainak felszabadulását. Ezen idegek ismerete tovább erősítette a GnRH-pulzáció endokrin, metabolikus és környezeti hatások általi modulációjának megértését. A szerzők kitérnek az endokrin diszruptorok veszélyére a pubertas fiziológiás lefolyásában. Az áttekintés célja, hogy átfogó képet adjunk a kisspeptin fiziológiájával kapcsolatos eddigi kutatási eredményekről, mivel a kisspeptin-jelátvitel manipulációja új terápiás lehetőségekkel járhat a patológiásan alacsony vagy magas luteinizálóhormon (LH)-pulzációval rendelkező betegeknél. Orv Hetil. 2018; 159(29): 1175–1182.

  • 1

    Ellison PT, Reiches MW, Shattuck-Faegre H, et al. Puberty as a life history transition. Ann Hum Biol. 2012; 39: 352–360.

  • 2

    Stephens SB, Wallen K. Environmental and social influences on neuroendocrine puberty and behavior in macaques and other nonhuman primates. Horm Behav. 2013; 64: 226–239.

  • 3

    Harris GW. Neural control of the pituitary gland. Edward Arnold, London, 1955.

  • 4

    Watts AG. 60 years of neuroendocrinology: The structure of the neuroendocrine hypothalamus: the neuroanatomical legacy of Geoffrey Harris. J Endocrinol. 2015; 226: T25–T39.

  • 5

    Flerkó B. Fourth Geoffrey Harris Memorial Lecture: The hypophysial portal circulation today. Neuroendocrinology 1980; 30: 56–63.

  • 6

    Abreu AP, Kaiser UB. Pubertal development and regulation. Lancet Diabetes Endocrinol. 2016; 4: 254–264.

  • 7

    Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism 2017 Dec 6. pii: S0026-0495(17)30330-X. [Epub ahead of print]

    • Crossref
    • Export Citation
  • 8

    Plant TM. Neuroendocrine control of the onset of puberty. Front Neuroendocrinol. 2015; 38: 73–88.

  • 9

    Cheng G, Coolen LM, Padmanabhan V, et al. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology 2010; 151: 301–311.

  • 10

    Livadas S, Chrousos GP. Control of the onset of puberty. Curr Opin Pediatr. 2016; 28: 551–558.

  • 11

    Péter F. Puberty. In: Péter F. (ed.) Pediatric endocrinology. [Pubertás. In: Péter F. (szerk.) Gyermekendokrinológia.] Semmelweis Kiadó, Budapest, 2010; pp. 151. [Hungarian]

  • 12

    Javed Z, Qamar U, Sathyapalan T. The role of kisspeptin signalling in the hypothalamic-pituitary-gonadal axis – current perspective. Endokrynol Pol. 2015; 66: 534–547.

  • 13

    Frisch RE, Revelle R, Cook S. Components of weight at menarche and the initiation of the adolescent growth spurt in girls: estimated total water, llean body weight and fat. Hum Biol. 1973; 45: 469–483.

  • 14

    Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

  • 15

    Elias CF. Leptin action in pubertal development: recent advances and unanswered questions. Trends Endocrinol Metab. 2012; 23: 9–15.

  • 16

    Odle AK, Akhter N, Syed MM, et al. Leptin regulation of gonadotrope gonadotropin-releasing hormone receptors as a metabolic checkpoint and gateway to reproductive competence. Front Endocrinol (Lausanne). 2018; 8: 367.

    • Crossref
    • Export Citation
  • 17

    Mantzoros CS, Magkos F, Brinkoetter M, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011; 301: E567–E584.

  • 18

    Bohlen TM, Silveira MA, Zampieri TT, et al. Fatness rather than leptin sensitivity determines the timing of puberty in female mice. Mol Cell Endocrinol. 2016; 423: 11–21.

  • 19

    Krey LC, Butler WR, Knobil E. Surgical disconnection of the medial basal hypothalamus and pituitary function in the Rhesus monkey. I. Gonadotropin secretion. Endocrinology 1975; 96: 1073–1087.

  • 20

    Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum Reprod Update 2014; 20: 485–500.

  • 21

    de Roux N, Genin E, Carel JC, et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003; 100: 10972–10976.

  • 22

    Tng EL. Kisspeptin signalling and its roles in humans. Singapore Med J. 2015; 56: 649–656.

  • 23

    Oakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. Endocr Rev. 2009; 30: 713–743.

  • 24

    Pasquier J, Lafont AG, Denis F, et al. Eel kisspeptins: identification, functional activity, and inhibition on both pituitary LH and GnRH receptor expression. Front Endocrinol (Lausanne). 2018; 8: 353.

    • Crossref
    • Export Citation
  • 25

    Pita J, Barrios V, Gavela-Pérez T, et al. Circulating kisspeptin levels exhibit sexual dimorphism in adults, are increased in obese prepubertal girls and do not suffer modifications in girls with idiopathic central precocious puberty. Peptides 2011; 32: 1781–1786.

  • 26

    Herbison AE. Physiology of the adult gonadotropin-releasing hormone neuronal network. In: Plant TM, Zeleznik AJ. (eds.) Knobil and Neill’s Physiology of Reproduction. 4. Elsevier Inc., San Diego, CA, 2015; pp. 399–467.

  • 27

    Gahete MD, Vázquez-Borrego MC, Martínez-Fuentes AJ, et al. Role of the Kiss1/Kiss1r system in the regulation of pituitary cell function. Mol Cell Endocrinol. 2016; 438: 100–106.

  • 28

    Mijiddorj T, Kanasaki H, Sukhbaatar U, et al. Mutual regulation by GnRH and kisspeptin of their receptor expression and its impact on the gene expression of gonadotropin subunits. Gen Comp Endocrinol. 2017; 246: 382–389.

  • 29

    Goodman RL, Lehman MN, Smith JT et al. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 2007; 148: 5752–5760.

  • 30

    Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 2010; 151: 3479–3489.

  • 31

    Goodman RL, Coolen LM, Lehman MN. A role for neurokinin B in pulsatile GnRH secretion in the ewe. Neuroendocrinology 2014; 99: 18–32.

  • 32

    Skrapits K, Borsay BA, Herczeg L, et al. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human. Front Neurosci. 2015; 9: 29.

  • 33

    Ruiz-Pino F, Garcia-Galiano D, Manfredi-Lozano M, et al. Effects and interactions of tachykinins and dynorphin on FSH and LH secretion in developing and adult rats. Endocrinology 2015; 156: 576–588.

  • 34

    Navarro VM, Gottsch ML, Chavkin C, et al. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci. 2009; 29: 11859–11866.

  • 35

    Ramaswamy S, Guerriero KA, Gibbs RB, et al. Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male Rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology 2008; 149: 4387–4395.

  • 36

    Blaustein JD. The year in neuroendocrinology. Mol Endocrinol. 2010; 24: 252–260.

  • 37

    Marques P, Skorupskaite K, Rozario KS, et al. Physiology of GnRH and gonadotropin secretion. Endotext PMID: 25905297. Last update: 2015. http://www.endotext.org

  • 38

    McDevitt MA, Glidewell-Kenney C, Jimenez MA, et al. New insights into classical and non-classical actions of estrogen: evidence from estrogen receptor knock-out and knock-in mice. Mol Cell Endocrinol. 2008; 290: 24–30.

  • 39

    Tomikawa J, Homma T, Tajima S, et al. Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biol Reprod. 2010; 82: 313–319.

  • 40

    Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev. 2010; 31: 544–577.

  • 41

    Pinilla L, Aguilar E, Dieguez C, et al. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. 2012; 92: 1235–1316.

  • 42

    Kurian JR, Keen KL, Guerriero KA, et al. Tonic control of kisspeptin release in prepubertal monkeys: implications to the mechanism of puberty onset. Endocrinology 2012; 153: 3331–3336.

  • 43

    Watanabe M, Fukuda A, Nabekura J. The role of GABA in the regulation of GnRH neurons. Front Neurosci. 2014; 8: 387.

  • 44

    Yun S, Kim DK, Furlong M, et al. Does kisspeptin belong to the proposed RF-amide peptide family? Front Endocrinol (Lausanne). 2014; 5: 134–143.

  • 45

    Kriegsfeld LJ, Gibson EM, Williams WP, et al. The roles of RFamide-related peptide-3 in mammalian reproductive function and behaviour. J Neuroendocrinol. 2010; 22: 692–700.

  • 46

    Ubuka T, Son YL, Bentley GE, et al. Gonadotropin-inhibitory hormone (GnIH), GnIH receptor and cell signaling. Gen Comp Endocrinol. 2013; 190: 10–17.

  • 47

    Beltramo M, Dardente H, Cayla X, et al. Cellular mechanisms and integrative timing of neuroendocrine control of GnRH secretion by kisspeptin. Mol Cell Endocrinol. 2014; 382: 387–399.

  • 48

    Abreu AP, Macedo DB, Brito V, et al. A new pathway in the control of the initiation of puberty: the MKRN3 gene. J Mol Endocrinol. 2015; 54: R131–R139.

  • 49

    MKRN3 gene – makorin ring finger protein 3. Available from: https://ghr.nlm.nih.gov/gene/MKRN3

  • 50

    Cheong RY, Czieselsky K, Porteous R, et al. Expression of ESR1 in glutamatergic and GABAergic neurons is essential for normal puberty onset, estrogen feedback, and fertility in female mice. J Neurosci. 2015; 35: 14533–14543.

  • 51

    Alçin E, Sahu A, Ramaswamy S, et al. Ovarian regulation of kisspeptin neurones in the arcuate nucleus of the Rhesus monkey (Macaca mulatta). J Neuroendocrinol. 2013; 25: 488–496.

  • 52

    Losa-Ward SM, Todd KL, McCaffrey KA, et al. Disrupted organization of RFamide pathways in the hypothalamus is associated with advanced puberty in female rats neonatally exposed to bisphenol A. Biol Reprod. 2012; 87: 28.

  • 53

    Kurian JR, Keen KL, Kenealy BP, et al. Acute influences of bisphenol A exposure on hypothalamic release of gonadotropin-releasing hormone and kisspeptin in female Rhesus monkeys. Endocrinology 2015; 156: 2563–2570.

  • 54

    Csaba G. The crisis of the hormonal system: the health-effects of endocrine disruptors. [A hormonális rendszer válsága: az endokrin diszruptorok egészségügyi hatásai.] Orv Hetil. 2017, 158: 1443–1451. [Hungarian]