View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Pf. 2, 1428
  • 2 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
Open access

Absztrakt:

Bár a Humán Genom Projekt másfél évtizede feltárta a 3 milliárd nukleotidból álló emberi genetikai információ bázissorrendjét, a betegségek – elsősorban a komplex rendellenességek – hátterének pontos megismerése még várat magára. A még azonosítatlan örökletes tényezők összességét hiányzó örökölhetőségnek nevezzük, ennek felderítése a molekuláris patomechanizmus megismerésének alapja. Ez nem csupán elméleti kérdés: ezen tudás a mindennapi gyakorlatban a diagnosztika, a megelőzés és a célzott, egyénre szabott kezelés fejlődésének lehetőségét kínálja. A még nem ismert genetikai faktorok azonosításához a mind újabb és hatékonyabb molekuláris biológiai technikák alkalmazása hozzájárul, a cél eléréséhez azonban számos klinikai és genetikai koncepció újragondolása vezethet el. Tudásunkat az eddigi genomszintű analízisek megalapozták, de további ismeretek feltárása szükséges az alábbi szempontok alapján: (1) SNP-k mellett az ismétlődési variációk (VNTR-ek és CNV-k) genotipizálása és asszociáció elemzése, (2) gén–gén és gén–környezet kölcsönhatás vizsgálata, (3) epigenetikai elemzések, (4) polimorfizmusok biológiai funkciójának meghatározása, (5) biológiailag releváns diagnosztikai kategóriák, endofenotípusok alkalmazása. Noha a genomnak csupán az 1,2%-a felelős a fehérjék kódolásáért, ugyanakkor csaknem 90%-a RNS-re átíródik, így a génexpresszió-szintű vizsgálatok ígéretes kiindulópontot jelenthetnek, mivel rávilágíthatnak azon molekuláris szintű folyamatokra, amelyek szerepet játszanak a betegségek kialakításában. Orv Hetil. 2018; 159(31): 1254–1261.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Tenesa A, Haley CS. The heritability of human disease: estimation, uses and abuses. Nat Rev Genet. 2013; 14: 139–149.

  • 2

    Mayhew AJ, Meyre D. Assessing the heritability of complex traits in humans: methodological challenges and opportunities. Curr Genomics 2017; 18: 332–340.

  • 3

    Hyttinen V, Kaprio J, Kinnunen L, et al. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 2003; 52: 1052–1055.

  • 4

    Kaprio J. Twins and the mystery of missing heritability: the contribution of gene–environment interactions. J Intern Med. 2012; 272: 440–448.

  • 5

    Lundström S, Chang Z, Råstam M, et al. Autism spectrum disorders and autistic like traits: similar etiology in the extreme end and the normal variation. Arch Gen Psychiatry 2012; 69: 46–52.

  • 6

    Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012; 13: 537–551.

  • 7

    Maller J, George S, Purcell S, et al. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet. 2006; 38: 1055–1059.

  • 8

    Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008; 40: 638–645.

  • 9

    Maher B. Personal genomes: The case of the missing heritability. Nature 2008; 456: 18–21.

  • 10

    Stančaková A, Laakso M. Genetics of type 2 diabetes. Endocr Dev. 2016; 31: 203–220.

  • 11

    Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008; 40: 955–962.

  • 12

    Kathiresan S, Voight BF, Purcell S, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009; 41: 334–341.

  • 13

    Hemminki K, Forsti A, Bermejo JL. The ‘common disease-common variant’ hypothesis and familial risks. PLoS ONE 2008; 3: e2504.

  • 14

    Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet. 2008; 40: 695–701.

  • 15

    Patnala R, Clements J, Batra J. Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet. 2013; 14: 39.

  • 16

    Szalai Cs, Falus A, Oberfrank F. Medical genomics and bioinformatics. [Orvosi genomika és bioinformatika.] Semmelweis Egyetem, Budapest, 2012. [Hungarian]

  • 17

    Benjamin J, Li L, Patterson C, et al. Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking. Nat Genet. 1996; 12: 81–84.

  • 18

    Ebstein RP, Novick O, Umansky R, et al. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking. Nat Genet. 1996; 12: 78–80.

  • 19

    Leung PW, Chan JK, Chen LH, et al. Family-based association study of DRD4 gene in methylphenidate-responded Attention Deficit/Hyperactivity Disorder. PLoS ONE 2017; 12: e0173748.

  • 20

    Ronai Z, Guttman A, Keszler G, et al. Capillary electrophoresis study on DNA-protein complex formation in the polymorphic 5’ upstream region of the dopamine D4 receptor (DRD4) gene. Curr Med Chem. 2004; 11: 1023–1029.

  • 21

    Ronai Z, Szantai E, Szmola R, et al. A novel A/G SNP in the –615th position of the dopamine D4 receptor promoter region as a source of misgenotyping of the –616 C/G SNP. Am J Med Genet B Neuropsychiatr Genet. 2004; 126B: 74–78.

  • 22

    Hirschhorn JN, Lohmueller K, Byrne E, et al. A comprehensive review of genetic association studies. Genet Med. 2002; 4: 45–61.

  • 23

    Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004; 36: 949–951.

  • 24

    Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science 2004; 305: 525–528.

  • 25

    Haraksingh RR, Abyzov A, Urban AE. Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans. BMC Genomics 2017; 18: 321.

  • 26

    Hunt R, Sauna ZE, Ambudkar SV, et al. Silent (synonymous) SNPs: should we care about them? Methods Mol Biol. 2009; 578: 23–39.

  • 27

    Zhang Y, Wang D, Johnson AD, et al. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem. 2005; 280: 32618–32624.

  • 28

    Tetreault M, Bareke E, Nadaf J, et al. Whole-exome sequencing as a diagnostic tool: current challenges and future opportunities. Expert Rev Mol Diagn. 2015; 15: 749–760.

  • 29

    Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 2013; 9: e1003569.

  • 30

    Pertea M. The human transcriptome: an unfinished story. Genes (Basel) 2012; 3: 344–360.

  • 31

    Hemani G, Knott S, Haley C. An evolutionary perspective on epistasis and the missing heritability. PLoS Genet. 2013; 9: e1003295.

  • 32

    Kooperberg C, Leblanc M. Increasing the power of identifying gene × gene interactions in genome-wide association studies. Genet Epidemiol. 2008; 32: 255–263.

  • 33

    Davis AN, Afshar-Kharghan V, Sood AK. Platelet effects on ovarian cancer. Semin Oncol. 2014; 41: 378–384.

  • 34

    Stone RL, Nick AM, McNeish IA, et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med. 2012; 366: 610–618.

  • 35

    Horibe Y, Adachi S, Ohno T, et al. Alpha-glucosidase inhibitor use is associated with decreased colorectal neoplasia risk in patients with type 2 diabetes mellitus receiving colonoscopy: a retrospective study. Oncotarget 2017; 8: 97862–97870.

  • 36

    Barone BB, Yeh HC, Snyder CF, et al. Postoperative mortality in cancer patients with preexisting diabetes: systematic review and meta-analysis. Diabetes Care 2010; 33: 931–939.

  • 37

    Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010; 60: 207–221.

  • 38

    Fransgaard T, Thygesen LC, Gögenur I. Metformin increases overall survival in patients with diabetes undergoing surgery for colorectal cancer. Ann Surg Oncol. 2016; 23: 1569–1575.

  • 39

    Osaki M, Okada F, Ochiya T. miRNA therapy targeting cancer stem cells: a new paradigm for cancer treatment and prevention of tumor recurrence. Ther Deliv. 2015; 6: 323–337.

  • 40

    Herczeg Z, Vanya M, Szili K, et al. Genetic and epigenetic factors of polycystic ovary syndrome. [Genetikai es epigenetikai faktorok polycystás ovarium szindróma esetén.] Orv Hetil. 2016; 157: 1275–1281. [Hungarian]

  • 41

    Caudle KE, Thorn CF, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin Pharmacol Ther. 2013; 94: 640–645.

  • 42

    Szalai C, Tölgyesi G, Nagy A, et al. Pharmacogenomics of asthma: present and perspective. [Az asthma farmakogenomikája: jelen és perspektíva.] Orv Hetil. 2006; 147: 159–169. [Hungarian]

  • 43

    Brotman MA, Guyer AE, Lawson ES, et al. Facial emotion labeling deficits in children and adolescents at risk for bipolar disorder. Am J Psychiatry 2008; 165: 385–389.

  • 44

    Lenzenweger MF. Endophenotype, intermediate phenotype, biomarker: definitions, concept comparisons, clarifications. Depress Anxiety 2013; 30: 185–189.

  • 45

    Reitz C, Mayeux R. Endophenotypes in normal brain morphology and Alzheimer’s disease: a review. Neuroscience 2009; 164: 174–190.

  • 46

    Dick DM, Agrawal A, Keller MC, et al. Candidate gene–environment interaction research: reflections and recommendations. Perspect Psychol Sci. 2015; 10: 37–59.

  • 47

    Ziller MJ, Gu H, Müller F, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 2013; 500: 477–481.

  • 48

    Edfors F, Danielsson F, Hallström BM, et al. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol Syst Biol. 2016; 12: 883.

  • 49

    Kosti I, Jain N, Aran D, et al. Cross-tissue analysis of gene and protein expression in normal and cancer tissues. Sci Rep. 2016; 6: 24799.

  • 50

    Walker E, Hernandez AV, Kattan MW. Meta-analysis: Its strengths and limitations. Cleve Clin J Med. 2008; 75: 431–439.