View More View Less
  • 1 Szegedi Tudományegyetem, Általános Orvostudományi Kar, Szeged, Semmelweis u. 6., 6720
  • 2 Szegedi Tudományegyetem, Általános Orvostudományi Kar, Szeged
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $1,070.00

Absztrakt:

A diabetes mellitus magas vércukorszinttel járó krónikus metabolikus kórelváltozások heterogén csoportját jelöli. A diabetes az élethosszig tartó kezelés, gondozás és a markáns cardiovascularis szövődmények medicinális, szociális, társadalmi következményeinek ellátása vagy éppen el nem látása miatt az egyik leginkább költségigényes megbetegedés, az egészségügyi erőforrások 2–20%-át foglalja le. Cardiovascularis profilú belgyógyászati és sebészeti betegellátó rendszerekben a cukorbetegek aránya a 30–40%-ot is elérheti. Diabetes mellitusban a hyperglykaemia, az inzulinrezisztencia és a megváltozott lipidanyagcsere kóros metabolikus miliőt teremt. Az endothelsejtben kóros biokémiai, sejt- és szöveti szintű elváltozások alakulnak ki, melyek endotheldiszfunkcióhoz, majd a micro- és a macrovascularis keringés károsodásához vezetnek. Diabetes mellitusban thrombocytadiszfunkció is kialakul, mert a glükóz a vérlemezkék sejtmembránján is inzulinfüggetlen transzporterrel jut át. A vérplazmaalvadási faktorok koncentrációja a gyulladásos folyamatok miatt megemelkedik, és fenotípusuk az oxidáció, nitrolizáció, glikáció miatt megváltozik. Cukorbetegségben tehát direkt és indirekt hatások következtében a prothromboticus folyamatok erősödnek, az antithromboticus tendenciák gyengülnek, ez a haemostasis kóros thrombogen eltolódásával jár. Az endotheldiszfunkció és a haemostasis egyensúlyvesztésének „from bench to clinical basics” ismeretei megteremtik a lehetőséget, hogy alaposan meg tudjuk érteni a terápiás lépéseket, melyek áttekintése egy következő munka feladata lesz. Orv Hetil. 2018; 159(33): 1335–1345.

  • 1

    Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014; 370: 1514–1523.

  • 2

    Fülesdi B, Limburg M, Bereczki D, et al. No relationship between cerebral blood flow velocity and cerebrovascular reserve capacity and contemporaneously measured glucose and insulin concentrations in diabetes mellitus. Acta Diabetol. 1999; 36: 191–195.

  • 3

    Fidler TP, Campbell RA, Funari T, et al. Deletion of GLUT1 and GLUT3 reveals multiple roles for glucose metabolism in platelet and megakaryocyte function. Cell Rep. 2017; 20: 881–894.

  • 4

    Endocrine functions of the pancreas and regulation of carbohydrate metabolism. In: Barrett KE, Barman SM, Boitano S, et al. Ganong’s review of medical physiology. Twenty-third edn. McGraw-Hill, New York, NY, 2010; pp. 315–336.

  • 5

    General principles and energy production in medical physiology. In: Barrett KE, Barman SM, Boitano S, et al. Ganong’s review of medical physiology. Twenty-third edn. McGraw-Hill, New York, NY, 2010; pp. 1–30.

  • 6

    Wang G. Raison d’être of insulin resistance: the adjustable threshold hypothesis. J R Soc Interface 2014; 11: 20140892.

  • 7

    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–820.

  • 8

    Hansen NW, Hansen AJ, Sams A. The endothelial border to health: Mechanistic evidence of the hyperglycemic culprit of inflammatory disease acceleration. IUBMB Life 2017; 69: 148–161.

  • 9

    Paneni F, Beckman JA, Creager MA, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Eur Heart J. 2013; 34: 2436–2443.

  • 10

    Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013; 17: 20–33.

  • 11

    Taylor R. Banting memorial lecture 2012: reversing the twin cycles of type 2 diabetes. Diabet Med. 2013; 30: 267–275.

  • 12

    Márk L, Dani G. Diabetic dyslipidaemia and the atherosclerosis. [Diabeteses dyslipidaemia és atherosclerosis.] Orv Hetil. 2016; 157: 746–752. [Hungarian]

  • 13

    Creager MA, Lüscher TF, Cosentino F, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 2003; 108: 1527–1532.

  • 14

    Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010; 107: 1058–1070.

  • 15

    Sena CM, Pereira AM, Seiça R. Endothelial dysfunction – a major mediator of diabetic vascular disease. Biochim Biophys Acta 2013; 1832: 2216–2231.

  • 16

    Xu RS. Pathogenesis of diabetic cerebral vascular disease complication. World J Diabetes 2015; 6: 54–66.

  • 17

    Tousoulis D, Kampoli AM, Stefanadis C. Diabetes mellitus and vascular endothelial dysfunction: current perspectives. Curr Vasc Pharmacol. 2012; 10: 19–32.

  • 18

    Maillard LC, Maillard LC, Maillard L. Action des acides aminés sur les sucres: formation des mélanoïdines par voie méthodique. C R Acad Sci (Paris). 1912; 154: 66–68.

  • 19

    Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol Metab. 2014; 3: 94–108.

  • 20

    Labunskyy VM, Gladyshev VN. Role of reactive oxygen species-mediated signaling in aging. Antioxid Redox Signal. 2013; 19: 1362–1372.

  • 21

    Niemann B, Rohrbach S, Miller MR, et al. Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution: Part 3 of a 3-part series. J Am Coll Cardiol. 2017; 70: 230–251.

  • 22

    Sztanek F, M Molnár Á, Balogh Z. The role of oxidative stress in the development of diabetic neuropathy. [Az oxidatív stressz szerepe a diabeteses neuropathia kialakulásában.] Orv Hetil. 2016; 157: 1939–1946. [Hungarian]

  • 23

    Lamas S, Rodríguez-Puyol D. Endothelial control of vasomotor tone: the kidney perspective. Semin Nephrol. 2012; 32: 156–166.

  • 24

    Flavahan NA. Balancing prostanoid activity in the human vascular system. Trends Pharmacol Sci. 2007; 28: 106–110.

  • 25

    Abd-Elrahman KS, Walsh MP, Cole WC. Abnormal Rho-associated kinase activity contributes to the dysfunctional myogenic response of cerebral arteries in type 2 diabetes. Can J Physiol Pharmacol. 2015; 93: 177–184.

  • 26

    Hess K. The vulnerable blood. Coagulation and clot structure in diabetes mellitus. Hamostaseologie 2015; 35: 25–33.

  • 27

    Kearney K, Tomlinson D, Smith K, et al. Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk. Cardiovasc Diabetol. 2017; 16: 34.

  • 28

    Westein E, Hoefer T, Calkin AC. Thrombosis in diabetes: a shear flow effect? Clin Sci (London). 2017; 131: 1245–1260.

  • 29

    Vazzana N, Ranalli P, Cuccurullo C, et al. Diabetes mellitus and thrombosis. Thromb Res. 2012; 129: 371–377.

  • 30

    Santilli F, Simeone P, Liani R, et al. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat. 2015; 120: 28–39.

  • 31

    Lancellotti S, De Filippis V, Pozzi N, et al. Formation of methionine sulfoxide by peroxynitrite at position 1606 of von Willebrand factor inhibits its cleavage by ADAMTS-13: A new prothrombotic mechanism in diseases associated with oxidative stress. Free Radic Biol Med. 2010; 48: 446–456.

  • 32

    Zhao C, Isenberg JS, Popel AS. Human expression patterns: qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions. J Cell Mol Med. 2018; 22: 2086–2097.

  • 33

    Várkonyi T, Körei A, Putz Z, et al. Advances in the management of diabetic neuropathy. Minerva Med. 2017; 108: 419–437.

  • 34

    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 837–853.

  • 35

    Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 2009; 373: 1765–1772.

  • 36

    Yahagi K, Kolodgie FD, Lutter C, et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2017; 37: 191–204.

  • 37

    Babik B. Is there more to the future than suture? Physiology of the haemostasis from the clinical point of view II. [Csak öltés és töltés, vagy több? A perioperatív véralvadás klinikai élettana II.] Aneszteziol Intenz Ter. 2015; 45(2): 98–107. [Hungarian]

  • 38

    Babik B. Hemostasis in pregnancy: a natural model of hemostasis resuscitation in patients with massive perioperative blood loss. [A véralvadási rendszer adaptációja terhességben: a hemosztázisreszuszcitáció természetes modellje masszív vérzésben.] Aneszteziol Intenz Ter. 2017; 47(2): 9–23. [Hungarian]

  • 39

    Babik B. Is there more to the future than suture? Physiology of the haemostasis from the clinical point of view I. [Csak öltés és töltés, vagy több? A perioperatív véralvadás klinikai élettana I.] Aneszteziol Intenz Ter. 2015; 45(1): 24–37. [Hungarian]

  • 40

    Oskarsson HJ, Hofmeyer TG. Platelets from patients with diabetes mellitus have impaired ability to mediate vasodilation. J Am Coll Cardiol. 1996; 27: 1464–1470.

  • 41

    Li Y, Woo V, Bose R. Platelet hyperactivity and abnormal Ca2+ homeostasis in diabetes mellitus. Am J Physiol Heart Circ Physiol. 2001; 280: H1480–H1489.

  • 42

    Ferreira IA, Eybrechts KL, Mocking AI, et al. IRS-1 mediates inhibition of Ca2+ mobilization by insulin via the inhibitory G-protein Gi. J Biol Chem. 2004; 279: 3254–3264.

  • 43

    Davi G, Catalano I, Averna M, et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med. 1990; 322: 1769–1774.

  • 44

    Angiolillo DJ, Suryadevara S. Aspirin and clopidogrel: efficacy and resistance in diabetes mellitus. Best Pract Res Clin Endocrinol Metab. 2009; 23: 375–388.

  • 45

    Boden G, Vaidyula VR, Homko C, et al. Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab. 2007; 92: 4352–4358.

  • 46

    Breitenstein A, Tanner FC, Lüscher TF. Tissue factor and cardiovascular disease: quo vadis? Circ J. 2010; 74: 3–12.

  • 47

    Klein OL, Okwuosa T, Chan C, et al. Changes in procoagulants track longitudinally with insulin resistance: findings from the Coronary Artery Risk Development in Young Adults (CARDIA) study. Diabet Med. 2014; 31: 462–465.

  • 48

    Dunn EJ, Ariëns RA, Grant PJ. The influence of type 2 diabetes on fibrin structure and function. Diabetologia 2005; 48: 1198–1206.

  • 49

    Yakovlev S, Makogonenko E, Kurochkina N, et al. Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites. Biochemistry 2000; 39: 15730–15741.

  • 50

    Hori Y, Gabazza EC, Yano Y, et al. Insulin resistance is associated with increased circulating level of thrombin-activatable fibrinolysis inhibitor in type 2 diabetic patients. J Clin Endocrinol Metab. 2002; 87: 660–665.