Author: Vilmos Bíró
View More View Less
Restricted access

Absztrakt:

Az elmúlt tíz esztendőben a szövetépítési (tissue engineering) módszerek fejlődésének exponenciális gyorsulását figyelhettük meg. Ez a felgyorsult növekedés a kézsebészetben is tapasztalható; e területen is felhasználásra kerültek a különböző vázszerkezetek segítségével végrehajtott szövetpótlások. A szerző irodalmi áttekintést nyújtó munkájában röviden tárgyalja a szövetépítés jelenlegi lehetőségeit az inak, a szalagok, az idegek, a csont- és porcszövetek, végül az erek sérüléseinek, illetve károsodásainak eseteiben. Véleménye szerint – tekintetbe véve az eddigi, igen intenzív, eredményes, úttörő jellegű (főként experimentális) tudományos kutatásokat – az újabb szövetépítési eljárások már a közeljövőben jelentős szerepet játszhatnak a helyreállító kézsebészetben. Orv Hetil. 2018; 159(34): 1385–1389.

  • 1

    Vízkelety T. (Editor-in-Chief) The bibliography of Hungarian ortopedics, traumatology and its borderlines from the beginning until now. [A magyar ortopédia, traumatológia és határterületei bibliográfiája, a kezdetektől napjainkig.] A Magyar Traumatológus Társaság, a Magyar Ortopéd Társaság, a Magyar Kézsebész Társaság és a Magyar Plasztikai Sebész Társaság kiadása, Budapest, 2007. [Hungarian]

  • 2

    Salamon A. Tissue replacement by using biology and biomaterial sciences (tissue engineering). [Szövetpótlás biológiai és biomateriális tudományok alkalmazásával (tissue engineering).] Magy Traumat Ortop Kézseb Plaszt Seb. 2005; 48: 340–351. [Hungarian]

  • 3

    Bíró V. Use of tissue engineering in the reconstruction of flexor tendon injuries. [Szövetépítés lehetőségei a kéz hajlítóin-sérüléseinek helyreállításában.] Orv Hetil. 2015, 156: 216–220. [Hungarian]

  • 4

    Lui H, Vaquette C, Bindra R. Tissue engineering in hand surgery. A technology update. J Hand Surg Am. 2017; 42: 727–735.

  • 5

    Mikos AG, Sarakinos G, Leite SM, et al. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 1993; 14: 323–330.

  • 6

    Vaquette C, Frochot C, Rahouadj R, et al. An innovative method to obtain porous PLLA scaffolds with highly spherical and interconnected pores. J Biomed Mater Res B Appl Biomater. 2008; 86: 9–17.

  • 7

    Jenkins MJ, Harrison KL, Silva MM, et al. Characterisation of microcellular foams produced from semi-crystalline PCL, using supercritical carbon dioxide. Eur Polym J. 2006; 42: 3145–3151.

  • 8

    Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 1999; 20: 1783–1790.

  • 9

    Vaquette C, Cooper-White JJ. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater. 2011; 7: 2544–2557.

  • 10

    Costa PF, Vaquette C, Baldwin J, et al. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication 2014; 6: 035006.

  • 11

    Moroni I, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2006; 27: 974–985.

  • 12

    Grognuz A, Scaletta C, Farron A, et al. Human fetal progenitor tenocytes for regenerative medicine. Cell Transplant. 2016; 25: 463–479.

  • 13

    Chong AK, Riboh J, Smith RL, et al. Flexor tendon tissue engineering: acellularized and reseeded tendon constructs. Plast Reconstr Surg. 2009; 123: 1759–1766.

  • 14

    Raghavan SS, Woon CY, Kraus A, et al. Human flexor tendon tissue engineering: decellularization human flexor tendons reduces immunogenicity in vivo. Tissue Eng Part A 2012; 18: 796–805.

  • 15

    Inui A, Kokubu T, Makino T, et al. Potency of double-layered poly L-lactic acid scaffold in tissue engineering of tendon tissue. Int Orthop. 2010; 34: 1327–1332.

  • 16

    Kraus A, Woon C, Raghavan S, et al. Co-culture of human adipose-derived stem cells with tenocytes increases proliferation and induces differentiation into a tenogenic lineage. Plast Reconstr Surg. 2013; 132: 754e–766e.

  • 17

    Kryger GS, Chong AK, Costa M, et al. A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering. J Hand Surg Am. 2007; 32: 597–605.

  • 18

    Garvin J, Qi J, Maloney M, et al. Novel system of engineering bioartificial tendons and application of mechanical load. Tissue Eng. 2003; 9: 967–979.

  • 19

    Riboh J, Chong AK, Pham H, et al. Optimization of flexor tendon tissue engineering with a cyclic strain bioreactor. J Hand Surg Am. 2008; 33: 1388–1396.

  • 20

    Yang PJ, Temenoff JS. Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev. 2009; 15: 127–141.

  • 21

    Teh TK, Toh SL, Goh JC. Aligned hybrid silk scaffold for enhanced differentiation of mesenchymal stem cells into ligament fibroblasts. Tissue Eng Part C Methods 2011; 17: 687–703.

  • 22

    Qu D, Mosher CZ, Boushell MK, et al. Engineering complex orthopedic tissues via strategic biomimicry. Ann Biomed Eng. 2015; 43: 697–717.

  • 23

    Seo YK, Yoon HH, Song KY, et al. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. J Orthop Res. 2009; 27: 495–503.

  • 24

    Endress R, Woon CY, Farnebo SJ, et al. Tissue-engineered collateral ligament composite allografts for scapholunate ligament reconstruction: an experimental study. J Hand Surg Am. 2012; 37: 1529–1537.

  • 25

    Guo Y, Chen G, Tian G, et al. Sensory recovery following decellularized nerve allograft transplantation for digital nerve repair. J Plast Surg Hand Surg. 2013; 47: 451–453.

  • 26

    Wang P, Zhang Y, Zhao J, et al. Intramuscular injection of bone marrow mesenchymal stem cells with small gap neurorrhaphy for periferal nerve repair. Neurosci Lett. 2015; 585: 119–125.

  • 27

    Taras JS, Jacoby SM, Lincoski CJ. Reconstruction of digital nerves with collagen conduits. J Hand Surg Am. 2011; 36: 1441–1446.

  • 28

    Riccio M, Pangrazi PP, Parodi PC, et al. The amnion muscle combined graft (AMCG) conduits: a new alternative in the repair of wide substance loss of peripheral nerves. Microsurgery 2014; 34: 616–622.

  • 29

    Penna V, Munder B, Stark GB, et al. An in vivo engineered nerve conduit – fabrication and experimental study in rats. Microsurgery 2011; 31: 395–400.

  • 30

    Gittard SD, Narayan RJ, Lusk J, et al. Rapid prototyping of scaphoid and lunate bones. Biotechnol J. 2009; 4: 129–134.

  • 31

    Lee JA, Parrett BM, Conejero JA, et al. Biological alchemy: engineering bone and fat from fat-derived stem cells. Ann Plast Surg. 2003; 50: 610–617.

  • 32

    Vacanti CA, Bonassar LJ, Vacanti MP, et al. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med. 2001; 344: 1511–1514.

  • 33

    Cipitria A, Reichert JC, Epari DR, et al. Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials 2013; 34: 9960–9968.

  • 34

    Reichert JC, Cipitria A, Epari DR, et al. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med. 2012; 4: 141ra93.

  • 35

    Zhao S, Wang H, Zhang Y, et al. Copper doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Acta Biomater. 2015; 14: 185–196.

  • 36

    Bartha L, Vajda A, Duska Z, et al. Autologous osteochondral mosaicplasty grafting. J Orthop Sports Phys Ther. 2006; 36: 739–750.

  • 37

    Hangody LR, Baló E, Szűcs A, et al. Cartilage repair with fresh osteochondral allograft. [Porcfelszínképzés friss osteochondralis allografttal.] Magy Traumat Ortop Kézseb Plaszt Seb. 2012; 55: 27–38. [Hungarian]

  • 38

    Kircher J. Autologous chondrocyte implantation for post-traumatic cartilage defect of the capitulum humeri. J Shoulder Elbow Surg. 2016; 25: e213–e216.

  • 39

    Cui X, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 2012; 18: 1304–1312.

  • 40

    Gao G, Schilling AF, Hubbell K, et al. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett. 2015; 37: 2349–2355.

  • 41

    Kesti M, Eberhardt C, Pagliccia G, et al. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater. 2015; 25: 7406–7417.

  • 42

    Isogai N, Landis W, Kim TH, et al. Formation of phalanges and small joints by use tissue-engineering. J Bone Joint Surg Am. 1999; 81: 306–316.

  • 43

    Scotti C, Mangiavini L, Boschetti F, et al. Effect of in vitro culture on a chondrocyte-fibrin glue hydrogel for cartilage repair. Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1400–1406.

  • 44

    Sommar P, Pettersson S, Ness C, et al. Engineering three-dimensional cartilage- and bone-like tissues using human dermal fibroblasts and macroporous gelatine microcarriers. J Plast Reconstr Aesthet Surg. 2010; 63: 1036–1046.

  • 45

    Petersen JP, Ueblacker P, Goepfert C, et al. Long-term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci Mater Med. 2008; 19: 2029–2038.

  • 46

    Itoh M, Nakayama K, Noguchi R, et al. Correction: Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS ONE 2015; 10: e0145971.

  • 47

    Meghezi S, Seifu DG, Bono N, et al. Engineering 3D cellularized collagen gels for vascular tissue regeneration. J Vis Exp. 2015; 100: e52812.

All Time Past Year Past 30 Days
Abstract Views 385 378 34
Full Text Views 65 22 0
PDF Downloads 22 2 0