View More View Less
  • 1 Debreceni Egyetem, Általános Orvostudományi Kar, Debrecen, Nagyerdei krt. 98., 4032
Restricted access

Absztrakt:

A mikro-RNS-ek (miRNS) rövid, általában 18–25 nukleotid hosszúságú, nem kódoló RNS-molekulák, melyek kulcsfontosságú szerepet játszanak a sejtek fiziológiás működéséhez szükséges gének expressziójának poszttranszkripciós szabályozásában. Fő funkciójuk a messenger RNS-ek (hírvivő RNS, mRNS) működésének modulálása azáltal, hogy az mRNS 3’ UTR-régiójához kötődnek, aminek eredményeként az mRNS által kódolt fehérje kifejeződése gátlódik, de akár az mRNS degradációja is bekövetkezhet. A miRNS-ek nemcsak maggal rendelkező sejtekben, de a vérlemezkékben, a vörösvértestekben, illetve keringő formában a vérben, a vizeletben és egyéb testfolyadékokban is megtalálhatók. Sokan sokáig kételkedve fogadták, hogy a sejtmaggal nem rendelkező keringő „sejtdarabok” a 8–12 napos átlagélettartamukkal hordozhatnak-e funkcionális RNS-molekulákat, és ezáltal képesek lehetnek-e akár fehérjeszintézisre különböző stimulusok hatására. Az elmúlt néhány évben számos közlemény jelent meg, amely bizonyította bizonyos vérlemezke-mRNS-ek és az azok működését reguláló miRNS-ek sejtaktivációt szabályozó szerepét olyan betegségekben is, melyekben a thrombocyták fokozott aktivációs állapotba kerülnek, például 2-es típusú diabetes mellitusban vagy szeptikus állapotban. Patofiziológiai szerepük mellett a miRNS-ek új biomarkerek is lehetnek ezen betegségek vizsgálatában vagy differenciáldiagnosztikájában. A jelen összefoglaló közlemény a thrombocyta-miRNS-ekről eddig ismeretes adatokat kívánta összegyűjteni, különös tekintettel a diabetesben és szepszisben leírt eltéréseivel. Orv Hetil. 2018; 159(47): 1962–1970.

  • 1

    Bartel DP. MicroRNAs: genomics biogenesis, mechanism and function. Cell 2004; 116: 281–297.

  • 2

    Wiemer EA. The role of microRNAs in cancer: no small matter. Eur J Cancer 2007; 43: 1529–1444.

  • 3

    Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010; 56: 1733–1741.

  • 4

    Turchinovich A, Tonevitsky AG, Burwinkel B. Extracellular miRNA: a collision of two paradigms. Trends Biochem Sci. 2016; 41: 883–892.

  • 5

    Nomura S. Extracellular vesicles and blood diseases. Int J Hematol. 2017; 105: 392–405.

  • 6

    Sunderland N, Skroblin P, Barwari T, et al. MicroRNA biomarkers and platelet reactivity: the clot thickens. Circ Res. 2017; 120: 418–435.

  • 7

    Ruggeri ZM. Platelets in atherothrombosis. Nat Med. 2002; 8: 1227–1234.

  • 8

    Koupenova M, Clancy L, Corkrey HA, et al. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018; 122: 337–351.

  • 9

    Nagy B Jr, Csongrádi E, Bhattoa HP, et al. Investigation of Thr715Pro P-selectin gene polymorphism and soluble P-selectin levels in type 2 diabetes mellitus. Thromb Haemost. 2007; 98: 186–191.

  • 10

    Nagy B Jr, Jin J, Ashby B, et al. Contribution of the P2Y12 receptor mediated pathway to platelet hyperreactivity in hypercholesterolemia. J Thromb Haemost. 2011; 9: 810–819.

  • 11

    Kappelmayer J, Beke Debreceni I, Vida A, et al. Distinct effects of Re- and S-forms of LPS on modulating platelet activation. J Thromb Haemost. 2013; 11: 775–778.

  • 12

    Kappelmayer J, Nagy B Jr, Miszti-Blasius K, et al. The emerging value of P-selectin as a disease marker. Clin Chem Lab Med. 2004; 42: 475–486.

  • 13

    Rondina MT, Weyrich AS. Regulation of the genetic code in megakaryocytes and platelets. J Thromb Haemost. 2015; 13(Suppl 1): S26–S32.

  • 14

    Landry P, Plante I, Ouellet DL, et al. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol. 2009; 16: 961–966.

  • 15

    Zimmerman GA, Weyrich AS. Signal-dependent protein synthesis by activated platelets: new pathways to altered phenotype and function. Arterioscler Thromb Vasc Biol. 2008; 28: 17–24.

  • 16

    Denis MM, Tolley ND, Buntin M, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005; 122: 379–391.

  • 17

    Plé H, Landry P, Benham A, et al. The repertoire and features of human platelet microRNAs. PLoS ONE 2012; 7: e50746.

  • 18

    Nagalla S, Shaw C, Kong X, et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 2011; 117: 5189–5197.

  • 19

    Simon LM, Edelstein LC, Nagalla S, et al. Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 2014; 123: e37–e45.

  • 20

    Corduan A, Plé H, Laffont B, et al. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation. Thromb Haemost. 2015; 113: 1046–1059.

  • 21

    Elgheznawy A, Shi L, Hu J, et al. Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. Circ Res. 2015; 117: 157–165.

  • 22

    Fejes Z, Póliska S, Czimmerer Z, et al. Hyperglycemia suppresses microRNA expression in platelets to increase P2RY12 and SELP levels in type 2 diabetes mellitus. Thromb Haemost. 2017; 117: 529–542.

  • 23

    Rowley JW, Chappaz S, Corduan A, et al. Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood 2016; 127: 1743–1751.

  • 24

    Lood C, Amisten S, Gullstrand B, et al. Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease. Blood 2010; 116: 1951–1957.

  • 25

    Hu L, Chang L, Zhang Y, et al. Platelets express activated P2Y12 receptor in patients with diabetes mellitus. Circulation 2017; 136: 817–833.

  • 26

    Kaudewitz D, Skroblin P, Bender LH, et al. Association of microRNAs and YRNAs with platelet function. Circ Res. 2016; 118: 420–432.

  • 27

    Kondkar AA, Bray MS, Leal SM, et al. VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost. 2010; 8: 369–378.

  • 28

    Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006; 103: 5078–5083.

  • 29

    Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011; 108: 5003–5008.

  • 30

    Gidlöf O, van der Brug M, Ohman J, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 2013; 121: 3908–3917.

  • 31

    Laffont B, Corduan A, Plé H, et al. Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood 2013; 122: 253–261.

  • 32

    Laffont B, Corduan A, Rousseau M, et al. Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost. 2016; 115: 311–323.

  • 33

    Ferroni P, Basili S, Falco A, et al. Platelet activation in type 2 diabetes mellitus. J Thromb Haemost. 2004; 2: 1282–1291.

  • 34

    Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010; 107: 810–817.

  • 35

    Duan X, Zhan Q, Song B, et al. Detection of platelet microRNA expression in patients with diabetes mellitus with or without ischemic stroke. J Diabetes Complications 2014; 28: 705–710.

  • 36

    Zhang YY, Zhou X, Ji WJ, et al. Decreased circulating microRNA-223 level predicts high on-treatment platelet reactivity in patients with troponin-negative non-ST elevation acute coronary syndrome. J Thromb Thrombolysis 2014; 38: 65–72.

  • 37

    Randriamboavonjy V, Isaak J, Elgheznawy A, et al. Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes. Blood 2012; 120: 415–423.

  • 38

    Romania P, Lulli V, Pelosi E, et al. MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br J Haematol. 2008; 143: 570–580.

  • 39

    Felli N, Pedini F, Romania P, et al. MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 2009; 94: 479–486.

  • 40

    Cognasse F, Nguyen KA, Damien P, et al. The inflammatory role of platelets via their TLRs and Siglec receptors. Front Immunol. 2015; 6: 83.

  • 41

    Liu X, Liu H, Luo X, et al. Strains of Group B streptococci from septic patients induce platelet activation via Toll-like Receptor 2. Clin Exp Pharmacol Physiol. 2017; 44: 335–343.

  • 42

    Cognasse F, Hamzeh-Cognasse H, Lafarge S, et al. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol. 2008; 141: 84–91.

  • 43

    Andonegui G, Kerfoot SM, McNagny K, et al. Platelets express functional Toll-like receptor-4. Blood 2005; 106: 2417–2423.

  • 44

    Kraemer BF, Campbell RA, Schwertz H, et al. Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets. Blood 2012; 120: 5014–5020.

  • 45

    Wain J, Pham VB, Ha V, et al. Quantitation of bacteria in bone marrow from patients with typhoid fever: relationship between counts and clinical features. J Clin Microbiol. 2001; 39: 1571–1576.

  • 46

    Beaulieu LM, Lin E, Morin KM, et al. Regulatory effects of TLR2 on megakaryocytic cell function. Blood 2011; 117: 5963–5974.

  • 47

    Freishtat RJ, Natale J, Benton AS, et al. Sepsis alters the megakaryocyte-platelet transcriptional axis resulting in granzyme B-mediated lymphotoxicity. Am J Respir Crit Care Med. 2009; 179: 467–473.

  • 48

    Rondina MT, Schwertz H, Harris ES, et al. The septic milieu triggers expression of spliced tissue factor mRNA in human platelets. J Thromb Haemost. 2011; 9: 748–758.

  • 49

    Shashkin PN, Brown GT, Ghosh A, et al. Lipopolysaccharide is a direct agonist for platelet RNA splicing. J Immunol. 2008; 181: 3495–3502.

  • 50

    Harrison P, Goodall AH. “Message in the platelet” – more than just vestigial mRNA! Platelets 2008; 19: 395–404.

  • 51

    Jayachandran M, Brunn GJ, Karnicki K, et al. In vivo effects of lipopolysaccharide and TLR4 on platelet production and activity: implications for thrombotic risk. J Appl Physiol (1985). 2007; 102: 429–433.

  • 52

    Reithmair M, Buschmann D, Märte M, et al. Cellular and extracellular miRNAs are blood-compartment-specific diagnostic targets in sepsis. J Cell Mol Med. 2017; 21: 2403–2411.

  • 53

    Wang JF, Yu ML, Yu G, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun. 2010; 394: 184–188.

  • 54

    Wang HJ, Deng J, Wang JY, et al. Serum miR-122 levels are related to coagulation disorders in sepsis patients. Clin Chem Lab Med. 2014; 52: 927–933.

  • 55

    Fejes Z, Orosz T, Póliska S, et al. Septic conditions modulate the level of miRNAs in platelets and megakaryocytes that may contribute to abnormal platelet reactivity. Res Pract Thromb Haemost. 2017; S1: 16.

  • 56

    Lehmann SM, Krüger C, Park B, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012; 15: 827–835.

  • 57

    Zafrani L, Gerotziafas G, Byrnes C, et al. Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release. Am J Respir Crit Care Med. 2012; 185: 744–755.

  • 58

    Fejes Z, Czimmerer Z, Szük T, et al. Endothelial cell activation is attenuated by everolimus via transcriptional and post-transcriptional regulatory mechanisms after drug-eluting coronary stenting. PLoS ONE 2018; 13: e0197890.

  • 59

    Decmann Á, Perge P, Nagy Z, et al. Circulating microRNAs in the diagnostics of endocrine neoplasms. [Keringő mikroRNS-ek az endokrin daganatok diagnosztikájában.] Orv Hetil. 2017; 158: 483–490. [Hungarian]

  • 60

    Nagy B, Csanádi Z, Póka R. The importance of “free” nucleic acids in the non-invasive diagnostics. [A „szabad” nukleinsavak jelentősége a noninvazív diagnosztikában.] Orv Hetil. 2016; 157: 1900–1909. [Hungarian]

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 33 0 0
Feb 2021 22 1 1
Mar 2021 83 0 0
Apr 2021 5 1 2
May 2021 14 0 1
Jun 2021 6 0 0
Jul 2021 0 0 0