Author: Gábor Nagy1
View More View Less
  • 1 Debreceni Egyetem, Általános Orvostudományi Kar, Debrecen, Nagyerdei krt. 98., 4032
Restricted access

Absztrakt:

A primer immunhiányos betegségekben az immunrendszer hibás működését genetikai eltérés okozza. A kezelőorvos a klinikai tünetek, jelek, a családi anamnézis és a kórokozó-kimutatás eredményei alapján veti fel a lehetséges diagnózisokat. A gyanú igazolásához nagy segítséget ad, ha az érintett immunológiai funkció in vitro diagnosztikai módszerekkel tesztelhető. A közlemény az antitestválasz, a T-sejtek, a phagocytafunkció, a komplementszisztéma és a veleszületett immunrendszer egyéb elemeinek vizsgálatára alkalmas szűrő, megerősítő és betegségspecifikus laboratóriumi módszereket foglalja össze, nem taglalva a végső diagnózist megadó genetikai teszteket. Orv Hetil. 2018; 159(49): 2087–2094.

  • 1

    Long MP, Sanford WK, Bluth HM. Immunodeficiency disorders. In: McPherson RA, Pincus MR. (ed.) Henry’s clinical diagnosis and management by laboratory methods. 23rd edn. Elsevier, Philadelphia, PA, 2017; pp. 983–992.

  • 2

    Rosenzweig SD, Fleisher TA. Overview of laboratory studies for evaluating primary immune deficiency disorders. In: Sullivan KE, Stiehm ER. (eds.) Stiehm’s immune deficiencies. Elsevier, London, 2014; pp. 61–72.

  • 3

    Picard C, Bobby Gaspar H, Al-Herz W, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee report on inborn errors of immunity. J Clin Immunol. 2018; 38: 96–128. [Epub 2017 Dec 11]

  • 4

    Bousfiha A, Jeddane L, Picard C, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2018; 38: 129–143. [Epub 2017 Dec 11]

  • 5

    Jolles S, Borrell R, Zouwail S, et al. Calculated globulin (CG) as a screening test for antibody deficiency. Clin Exp Immunol. 2014; 177: 671–678.

  • 6

    Bright PD, Rooney N, Virgo PF, et al. Laboratory clues to immunodeficiency; missed chances for early diagnosis? J Clin Pathol. 2015; 68: 1–5.

  • 7

    McPherson RA, Riley SR, Massey HD. Laboratory evaluation of immunoglobin function and humoral immunity. In: McPherson RA, Pincus MR. (eds.) Henry’s clinical diagnosis and management by laboratory methods. 23rd edn. Elsevier, Philadelphia, PA, 2017; pp. 913–928.

  • 8

    O’Gorman MR. Recent developments related to the laboratory diagnosis of primary immunodeficiency diseases. Curr Opin Pediatr. 2008; 20: 688–697.

  • 9

    Park MA, Li JT, Hagan JB, et al. Common variable immunodeficiency: a new look at an old disease. Lancet 2008; 372: 489–502.

  • 10

    Frasch CE. Immune responses to polysaccharide and conjugate vaccines. In: Detrick B, Hamilton RG, Folds JD. (eds.) Manual of molecular and clinical laboratory immunology. 7th edn. ASM Press, Washington, DC, 2006; pp. 434–443.

  • 11

    Lepow ML, Hughes PA. Corynebacterium diphtheriae and Clostridium tetani: immune response and diagnostic methods. In: Detrick B, Hamilton RG, Folds JD. (eds.) Manual of molecular and clinical laboratory immunology. 7th edn. ASM Press, Washington, DC, 2006; pp. 444–447.

  • 12

    Abraham RS, Aubert G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clin Vaccine Immunol. 2016; 23: 254–271.

  • 13

    Bonilla FA, Barlan I, Chapel H, et al. International consensus document (ICON): common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016; 4: 38–59.

  • 14

    Malphettes M, Gérard L, Carmagnat M, et al. Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin Infect Dis. 2009; 49: 1329–1338.

  • 15

    Kanegane H, Hoshino A, Okano T, et al. Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int. 2018; 67: 43–54.

  • 16

    Seyama K, Nonoyama S, Gangsaas I, et al. Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome. Blood 1998; 92: 2421–2434.

  • 17

    Boldt A, Bitar M, Sack U. Flow cytometric evaluation of primary immunodeficiencies. Clin Lab Med. 2017; 37: 895–913.

  • 18

    Locke BA, Dasu T, Verbsky JW. Laboratory diagnosis of primary immunodeficiencies. Clin Rev Allergy Immunol. 2014; 46: 154–168.

  • 19

    Chiarini M, Zanotti C, Serana F, et al. T-cell receptor and K-deleting recombination excision circles in newborn screening of T- and B-cell defects: review of the literature and future challenges. J Public Health Res. 2013; 2: 9–16.

  • 20

    Riley RS. Laboratory evaluation of the cellular immune system. In: McPherson RA, Pincus MR. (eds.) Henry’s clinical diagnosis and management by laboratory methods. 23rd edn. Elsevier, Philadelphia, PA, 2017; pp. 890–912.

  • 21

    Soltész B, Tóth B, Sarkadi AK, et al. The evolving view of IL-17-mediated immunity in defense against mucocutaneous candidiasis in humans. Int Rev Immunol. 2015; 34: 348–363.

  • 22

    van Eeden SF, Klut ME, Walker BA, et al. The use of flow cytometry to measure neutrophil function. J Immunol Methods 1999; 232: 23–43.

  • 23

    Gibson C, Berliner N. How we evaluate and treat neutropenia in adults. Blood 2014; 124: 1251–1258.

  • 24

    van den Berg JM, Kuijpers TW. Educational paper: defects in number and function of neutrophilic granulocytes causing primary immunodeficiency. Eur J Pediatr. 2011; 170: 1369–1376.

  • 25

    Heinzl MW, Schönbacher M, Dauber EM, et al. Detection of granulocyte-reactive antibodies: a comparison of different methods. Vox Sang. 2015; 108: 287–293.

  • 26

    Autrel-Moignet A, Lamy T. Autoimmune neutropenia. Presse Med. 2014; 43: e105–e118.

  • 27

    Elbim C, Lizard G. Flow cytometric investigation of neutrophil oxidative burst and apoptosis in physiological and pathological situations. Cytometry A 2009; 75: 475–481.

  • 28

    Massey HD, McPherson RA, Huber AS, Jenny SN. Mediators of inflammation: Complement. In: McPherson RA, Pincus MR. (eds.) Henry’s clinical diagnosis and management by laboratory methods. 23rd edn. Elsevier, Philadelphia, PA, 2017; pp. 929–943.

  • 29

    Botto M, Kirschfink M, Macor P, et al. Complement in human diseases: lessons from complement deficiencies. Mol Immunol. 2009; 46: 2774–2783.

  • 30

    Poli A, Michel T, Thérésine M, et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 2009; 126: 458–465.

  • 31

    Orange JS. Human natural killer cell deficiencies. Curr Opin Allergy Clin Immunol. 2006; 6: 399–409.

  • 32

    Whiteside TL. Measurement of NK-cell activity in humans. In: Detrick B, Hamilton RG, Folds JD. (eds.) Manual of molecular and clinical laboratory immunology. 7th edn. ASM Press, Washington, DC, 2006; pp. 296–300.

  • 33

    Sag E, Bilginer Y, Ozen S. Autoinflammatory diseases with periodic fevers. Curr Rheumatol Rep. 2017; 19: 41.

  • 34

    Ozen S, Bilginer Y. A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol. 2014; 10: 135–147.

All Time Past Year Past 30 Days
Abstract Views 357 357 7
Full Text Views 39 22 0
PDF Downloads 17 12 0