View More View Less
  • 1 Debreceni Egyetem, Általános Orvostudományi Kar, Debrecen, Nagyerdei krt. 98., 4032
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $1,070.00

Absztrakt:

Korábbi tanulmányok igazolták, hogy a plazma high-density lipoprotein (HDL)-szintje fordítottan arányos a szív- és érrendszeri betegségek kialakulásának kockázatával. Az utóbbi évtizedekben azonban nyilvánvalóvá vált, hogy a HDL szerkezete és működése kulcsfontosságú az érelmeszesedést gátló hatás kialakulásában. Az apolipoprotein M (ApoM) egy HDL-hez kötött plazmafehérje, mely befolyásolja a HDL metabolizmusát és számos, érelmeszesedést gátló hatással rendelkezik, például véd az oxidációval szemben és szabályozza a sejtek koleszterinleadását. A szfingozin-1-foszfát (S1P) egy hatékony szfingolipidközvetítő molekula, mely a sejtek különböző funkcióit szabályozza, beleértve a sejtek differenciációját és migrációját, a programozott sejthalált és az érfali gyulladást. Az S1P főként az ApoM-et tartalmazó HDL-részecskékhez kötötten kering. Mindezek alapján a HDL ApoM- és S1P-tartalma kihat az érelmeszesedés folyamatára. Ráadásul a HDL ApoM- és S1P-tartalma módosulhat különböző kórállapotokban, például ischaemiás szívbetegség fennállása esetén. Ez az összefoglaló áttekinti a jelenleg rendelkezésre álló adatokat az ApoM és az S1P HDL-funkcióban betöltött szerepéről egészségesekben és cardiovascularis betegség fennállása esetén. Orv Hetil. 2018; 159(5): 168–175.

  • 1

    Roth GA, Johnson C, Abajobir A, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017; 70: 1–25.

  • 2

    Wilson PW, Abbott RD, Castelli WP. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis 1988; 8: 737–741.

  • 3

    Boekholdt SM, Arsenault BJ, Hovingh GK, et al. Levels and changes of HDL cholesterol and apolipoprotein A−I in relation to risk of cardiovascular events among statin-treated patients: a meta-analysis. Circulation 2013; 128: 1504–1512.

  • 4

    Feig JE, Hewing B, Smith JD, et al. High-density lipoprotein and atherosclerosis regression: evidence from preclinical and clinical studies. Circ Res. 2014; 114: 205–213.

  • 5

    März W, Kleber ME, Scharnagl H, et al. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol. 2017; 106: 663–675.

  • 6

    Bajnok L. HDL, or non-HDL: that is the question. Possibilities of pharmacological treatment in residual dyslipidaemia. [HDL vagy non-HDL: az itt a kérdés. A residualis dyslipidaemia gyógyszeres kezelésének lehetőségei.] Orv Hetil. 2014; 155: 62–68. [Hungarian]

  • 7

    Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016; 37: 2999–3058.

  • 8

    Paragh G, Harangi M, László M. New trends in lipidology: the increasing role of HDL-cholesterol. [Új trendek a lipidológiában a HDL-koleszterin szerepének felértékelődése.] Orv Hetil. 2008; 149: 1395–1404. [Hungarian]

  • 9

    von Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2001; 21: 13–27.

  • 10

    Cockerill GW, Rye KA, Gamble JR, et al. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol. 1995; 15: 1987–1994.

  • 11

    Soran H, Schofield JD, Durrington PN. Antioxidant properties of HDL. Front Pharmacol. 2015; 6: 222.

  • 12

    Aviram M, Rosenblat M, Bisgaier CL, et al. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J Clin Invest. 1998; 101: 1581–1590.

  • 13

    Hafiane A, Genest J. High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk. BBA Clin. 2015; 3: 175–188.

  • 14

    Heinecke JW. The HDL proteome: a marker – and perhaps mediator – of coronary artery disease. J Lipid Res. 2009; 50(Suppl): S167–S171.

  • 15

    Wiesner P, Leidl K, Boettcher A, et al. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J Lipid Res. 2009; 50: 574–585.

  • 16

    Xu N, Dahlbäck B. A novel human apolipoprotein (apoM). J Biol Chem. 1999; 274: 31286–31290.

  • 17

    Christoffersen C, Nielsen LB, Axler O, et al. Isolation and characterization of human apolipoprotein M-containing lipoproteins. J Lipid Res. 2006; 47: 1833–1843.

  • 18

    Axler O, Ahnström J, Dahlbäck B. An ELISA for apolipoprotein M reveals a strong correlation to total cholesterol in human plasma. J Lipid Res. 2007; 48: 1772–1780.

  • 19

    Davidson WS, Silva RA, Chantepie S, et al. Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function. Arterioscler Thromb Vasc Biol. 2009; 29: 870–876.

  • 20

    Christoffersen C, Benn M, Christensen PM, et al. The plasma concentration of HDL-associated apoM is influenced by LDL receptor-mediated clearance of apoB-containing particles. J Lipid Res. 2012; 53: 2198–2204.

  • 21

    Duan J, Dahlbäck B, Villoutreix BO. Proposed lipocalin fold for apolipoprotein M based on bioinformatics and site-directed mutagenesis. FEBS Lett. 2001; 499: 127–132.

  • 22

    Schlehuber S, Skerra A. Lipocalins in drug discovery: from natural ligand-binding proteins to “anticalins”. Drug Discov Today 2005; 10: 23–33.

  • 23

    Axler O, Ahnström J, Dahlbäck B. Apolipoprotein M associates to lipoproteins through its retained signal peptide. FEBS Lett. 2008; 582: 826–828.

  • 24

    Christoffersen C, Ahnström J, Axler O, et al. The signal peptide anchors apolipoprotein M in plasma lipoproteins and prevents rapid clearance of apolipoprotein M from plasma. J Biol Chem. 2008; 283: 18765–18772.

  • 25

    Zhang B, Tomura H, Kuwabara A, et al. Correlation of high density lipoprotein (HDL)-associated sphingosine 1-phosphate with serum levels of HDL-cholesterol and apolipoproteins. Atherosclerosis 2005; 178: 199–205.

  • 26

    Faber K, Hvidberg V, Moestrup SK, et al. Megalin is a receptor for apolipoprotein M, and kidney-specific megalin-deficiency confers urinary excretion of apolipoprotein M. Mol Endocrinol. 2006; 20: 212–218.

  • 27

    Christoffersen C, Obinata H, Kumaraswamy SB, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA 2011; 108: 9613–9618.

  • 28

    Bode C, Sensken SC, Peest U, et al. Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate. J Cell Biochem. 2010; 109: 1232–1243.

  • 29

    Yu Y, Guo S, Feng Y, et al. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability. Lipids 2014; 49: 183–190.

  • 30

    Nofer JR, van der Giet M, Tölle M, et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest. 2004; 113: 569–581.

  • 31

    Kimura T, Sato K, Kuwabara A, et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem. 2001; 276: 31780–31785.

  • 32

    Theilmeier G, Schmidt C, Herrmann J, et al. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 2006; 114: 1403–1409.

  • 33

    González-Díez M, Rodríguez C, Badimon L, et al. Prostacyclin induction by high-density lipoprotein (HDL) in vascular smooth muscle cells depends on sphingosine 1-phosphate receptors: effect of simvastatin. Thromb Haemost. 2008; 100: 119–126.

  • 34

    O’Brien N, Jones ST, Williams DG, et al. Production and characterization of monoclonal anti-sphingosine-1-phosphate antibodies. J Lipid Res. 2009; 50: 2245–2257.

  • 35

    Murata N, Sato K, Kon J, et al. Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J. 2000; 352(Pt 3): 809–815.

  • 36

    Brulhart-Meynet MC, Braunersreuther V, Brinck J, et al. Improving reconstituted HDL composition for efficient post-ischemic reduction of ischemia reperfusion injury. PLoS One 2015; 10: e0119664.

  • 37

    Cannavo A, Liccardo D, Komici K, et al. Sphingosine kinases and sphingosine 1-phosphate receptors: signaling and actions in the cardiovascular system. Front Pharmacol. 2017; 8: 556.

  • 38

    Keul P, Lucke S, von Wnuck Lipinski K, et al. Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res. 2011; 108: 314–323.

  • 39

    Takeya H, Gabazza EC, Aoki S, et al. Synergistic effect of sphingosine 1-phosphate on thrombin-induced tissue factor expression in endothelial cells. Blood 2003; 102: 1693–1700.

  • 40

    Lee MH, Hammad SM, Semler AJ, et al. HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1 release from adipocytes: the role of sphingosine-1-phosphate. J Lipid Res. 2010; 51: 2619–2628.

  • 41

    Sattler K, Gräler M, Keul P, et al. Defects of high-density lipoproteins in coronary artery disease caused by low sphingosine-1-phosphate content: Correction by sphingosine-1-phosphate−loading. J Am Coll Cardiol. 2015; 66: 1470–1485.

  • 42

    Jing XD, Wei XM, Deng SB, et al. The relationship between the high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P) and coronary in-stent restenosis. Clin Chim Acta 2015; 446: 248–252.

  • 43

    Sattler K, Lehmann I, Gräler M, et al. HDL-bound sphingosine 1-phosphate (S1P) predicts the severity of coronary artery atherosclerosis. Cell Physiol Biochem. 2014; 34: 172–184.

  • 44

    Knapp M, Lisowska A, Zabielski P, et al. Sustained decrease in plasma sphingosine-1-phosphate concentration and its accumulation in blood cells in acute myocardial infarction. Prostaglandins Other Lipid Mediat. 2013; 106: 53–61.

  • 45

    Kavo AE, Rallidis LS, Sakellaropoulos GC, et al. Qualitative characteristics of HDL in young patients of an acute myocardial infarction. Atherosclerosis 2012; 220: 257–264.

  • 46

    Argraves KM, Sethi AA, Gazzolo PJ, et al. S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease. Lipids Health Dis. 2011; 10: 70.

  • 47

    Knapp M, Baranowski M, Czarnowski D, et al. Plasma sphingosine-1-phosphate concentration is reduced in patients with myocardial infarction. Med Sci Monit. 2009; 15: CR490–CR493.

  • 48

    Ahnström J, Axler O, Jauhiainen M, et al. Levels of apolipoprotein M are not associated with the risk of coronary heart disease in two independent case-control studies. J Lipid Res. 2008; 49: 1912–1917.

  • 49

    Deutschman DH, Carstens JS, Klepper RL, et al. Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am Heart J. 2003; 146: 62–68.

  • 50

    Bowman L, Hopewell JC, Chen F, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017; 377: 1217–1227.

  • 51

    Rached FH, Chapman MJ, Kontush A. HDL particle subpopulations: Focus on biological function. Biofactors 2015; 41: 67–77.